1.Impact of Postoperative Prolonged Air Leakage on Long-Term Pulmonary Function after Lobectomy for Lung Cancer
June Yeop LEE ; Joonseok LEE ; Varissara JAVAKIJKARNJANAKUL ; Beatrice Chia-Sui SHIH ; Woohyun JUNG ; Jae Hyun JEON ; Kwhanmien KIM ; Sanghoon JHEON ; Sukki CHO
Journal of Chest Surgery 2024;57(6):511-518
Background:
This study aimed to evaluate the long-term impact of postoperative prolonged air leak (PAL) on pulmonary function.
Methods:
We enrolled 1,316 patients with pathologic stage I–III lung cancer who underwent lobectomy. The cohort was divided into 2 groups: those who experienced PAL (n=55) and those who did not (n=1,261). Propensity score matching was conducted at a 1:4 ratio, resulting in 49 patients in the PAL group and 189 in the non-PAL group. Changes in pulmonary function were compared among preoperative, 6-month postoperative, and 12-month postoperative measurements between the 2 groups.
Results:
The variables used for propensity score matching included age, sex, smoking history, body mass index, baseline pulmonary function, pathologic stage, and surgical approach. All standardized mean differences were less than 0.1. Six months postoperatively, the PAL group showed a greater reduction in both forced expiratory volume in 1 second(FEV1 ) (-13.0% vs. -10.0%, p=0.041) and forced vital capacity (FVC) (-15.0% vs. -9.0%, p<0.001)than the non-PAL group. In cases of upper lobectomy, there were no significant differencesin FEV 1 changes between the PAL and non-PAL groups at both 6 and 12 months. However, in lower lobectomy, the PAL group demonstrated a more pronounced decrease in FEV1(-14.0% vs. -11.0%, p=0.057) and FVC (-20.0% vs. -13.0%, p=0.006) than the non-PAL group at 6 months postoperatively.
Conclusion
Postoperative PAL delayed the recovery of pulmonary function after lobectomy. These effects were markedly more pronounced after lower lobectomy than after upper lobectomy.
2.Visualization of the infratemporal fossa:enhancing anatomical learning through three-dimensional modeling
Woohyun CHO ; Hye Jin KIM ; Mi-Sun HUR ; Han-Soo LEE ; Kwan Hyun YOUN
Anatomy & Cell Biology 2024;57(4):592-597
The infratemporal fossa and pterygopalatine fossa are critical pathways for blood vessels and nerves leading to the orbit, nasal cavity, and oral cavity. Anatomical observation of these areas is challenging for learners due to their complex connections with surrounding structures and their deep location within the body. Since it is not easy to understand this area in three dimensions with only textbook images, there is a need to produce three-dimensional (3D) content. Most existing 3D data have reconstructed the digital imaging and communication in medicine files from computed tomography images with high accuracy; however, the surrounding structures often obstruct the view. For this reason, this project utilized Cinema4D (R18) software to refine the modeled bones and to create 3D models of muscles, blood vessels, and nerves that accurately represent their anatomical shapes and pathways. To facilitate easier access for learners via PC, the content was converted into PDF format. This enables the educational materials to be more easily viewed and the main structures more clearly observed using a computer-based viewer.
3.Visualization of the infratemporal fossa:enhancing anatomical learning through three-dimensional modeling
Woohyun CHO ; Hye Jin KIM ; Mi-Sun HUR ; Han-Soo LEE ; Kwan Hyun YOUN
Anatomy & Cell Biology 2024;57(4):592-597
The infratemporal fossa and pterygopalatine fossa are critical pathways for blood vessels and nerves leading to the orbit, nasal cavity, and oral cavity. Anatomical observation of these areas is challenging for learners due to their complex connections with surrounding structures and their deep location within the body. Since it is not easy to understand this area in three dimensions with only textbook images, there is a need to produce three-dimensional (3D) content. Most existing 3D data have reconstructed the digital imaging and communication in medicine files from computed tomography images with high accuracy; however, the surrounding structures often obstruct the view. For this reason, this project utilized Cinema4D (R18) software to refine the modeled bones and to create 3D models of muscles, blood vessels, and nerves that accurately represent their anatomical shapes and pathways. To facilitate easier access for learners via PC, the content was converted into PDF format. This enables the educational materials to be more easily viewed and the main structures more clearly observed using a computer-based viewer.
4.Visualization of the infratemporal fossa:enhancing anatomical learning through three-dimensional modeling
Woohyun CHO ; Hye Jin KIM ; Mi-Sun HUR ; Han-Soo LEE ; Kwan Hyun YOUN
Anatomy & Cell Biology 2024;57(4):592-597
The infratemporal fossa and pterygopalatine fossa are critical pathways for blood vessels and nerves leading to the orbit, nasal cavity, and oral cavity. Anatomical observation of these areas is challenging for learners due to their complex connections with surrounding structures and their deep location within the body. Since it is not easy to understand this area in three dimensions with only textbook images, there is a need to produce three-dimensional (3D) content. Most existing 3D data have reconstructed the digital imaging and communication in medicine files from computed tomography images with high accuracy; however, the surrounding structures often obstruct the view. For this reason, this project utilized Cinema4D (R18) software to refine the modeled bones and to create 3D models of muscles, blood vessels, and nerves that accurately represent their anatomical shapes and pathways. To facilitate easier access for learners via PC, the content was converted into PDF format. This enables the educational materials to be more easily viewed and the main structures more clearly observed using a computer-based viewer.
5.Impact of Postoperative Prolonged Air Leakage on Long-Term Pulmonary Function after Lobectomy for Lung Cancer
June Yeop LEE ; Joonseok LEE ; Varissara JAVAKIJKARNJANAKUL ; Beatrice Chia-Sui SHIH ; Woohyun JUNG ; Jae Hyun JEON ; Kwhanmien KIM ; Sanghoon JHEON ; Sukki CHO
Journal of Chest Surgery 2024;57(6):511-518
Background:
This study aimed to evaluate the long-term impact of postoperative prolonged air leak (PAL) on pulmonary function.
Methods:
We enrolled 1,316 patients with pathologic stage I–III lung cancer who underwent lobectomy. The cohort was divided into 2 groups: those who experienced PAL (n=55) and those who did not (n=1,261). Propensity score matching was conducted at a 1:4 ratio, resulting in 49 patients in the PAL group and 189 in the non-PAL group. Changes in pulmonary function were compared among preoperative, 6-month postoperative, and 12-month postoperative measurements between the 2 groups.
Results:
The variables used for propensity score matching included age, sex, smoking history, body mass index, baseline pulmonary function, pathologic stage, and surgical approach. All standardized mean differences were less than 0.1. Six months postoperatively, the PAL group showed a greater reduction in both forced expiratory volume in 1 second(FEV1 ) (-13.0% vs. -10.0%, p=0.041) and forced vital capacity (FVC) (-15.0% vs. -9.0%, p<0.001)than the non-PAL group. In cases of upper lobectomy, there were no significant differencesin FEV 1 changes between the PAL and non-PAL groups at both 6 and 12 months. However, in lower lobectomy, the PAL group demonstrated a more pronounced decrease in FEV1(-14.0% vs. -11.0%, p=0.057) and FVC (-20.0% vs. -13.0%, p=0.006) than the non-PAL group at 6 months postoperatively.
Conclusion
Postoperative PAL delayed the recovery of pulmonary function after lobectomy. These effects were markedly more pronounced after lower lobectomy than after upper lobectomy.
6.Visualization of the infratemporal fossa:enhancing anatomical learning through three-dimensional modeling
Woohyun CHO ; Hye Jin KIM ; Mi-Sun HUR ; Han-Soo LEE ; Kwan Hyun YOUN
Anatomy & Cell Biology 2024;57(4):592-597
The infratemporal fossa and pterygopalatine fossa are critical pathways for blood vessels and nerves leading to the orbit, nasal cavity, and oral cavity. Anatomical observation of these areas is challenging for learners due to their complex connections with surrounding structures and their deep location within the body. Since it is not easy to understand this area in three dimensions with only textbook images, there is a need to produce three-dimensional (3D) content. Most existing 3D data have reconstructed the digital imaging and communication in medicine files from computed tomography images with high accuracy; however, the surrounding structures often obstruct the view. For this reason, this project utilized Cinema4D (R18) software to refine the modeled bones and to create 3D models of muscles, blood vessels, and nerves that accurately represent their anatomical shapes and pathways. To facilitate easier access for learners via PC, the content was converted into PDF format. This enables the educational materials to be more easily viewed and the main structures more clearly observed using a computer-based viewer.
7.Visualization of the infratemporal fossa:enhancing anatomical learning through three-dimensional modeling
Woohyun CHO ; Hye Jin KIM ; Mi-Sun HUR ; Han-Soo LEE ; Kwan Hyun YOUN
Anatomy & Cell Biology 2024;57(4):592-597
The infratemporal fossa and pterygopalatine fossa are critical pathways for blood vessels and nerves leading to the orbit, nasal cavity, and oral cavity. Anatomical observation of these areas is challenging for learners due to their complex connections with surrounding structures and their deep location within the body. Since it is not easy to understand this area in three dimensions with only textbook images, there is a need to produce three-dimensional (3D) content. Most existing 3D data have reconstructed the digital imaging and communication in medicine files from computed tomography images with high accuracy; however, the surrounding structures often obstruct the view. For this reason, this project utilized Cinema4D (R18) software to refine the modeled bones and to create 3D models of muscles, blood vessels, and nerves that accurately represent their anatomical shapes and pathways. To facilitate easier access for learners via PC, the content was converted into PDF format. This enables the educational materials to be more easily viewed and the main structures more clearly observed using a computer-based viewer.
8.Impact of Postoperative Prolonged Air Leakage on Long-Term Pulmonary Function after Lobectomy for Lung Cancer
June Yeop LEE ; Joonseok LEE ; Varissara JAVAKIJKARNJANAKUL ; Beatrice Chia-Sui SHIH ; Woohyun JUNG ; Jae Hyun JEON ; Kwhanmien KIM ; Sanghoon JHEON ; Sukki CHO
Journal of Chest Surgery 2024;57(6):511-518
Background:
This study aimed to evaluate the long-term impact of postoperative prolonged air leak (PAL) on pulmonary function.
Methods:
We enrolled 1,316 patients with pathologic stage I–III lung cancer who underwent lobectomy. The cohort was divided into 2 groups: those who experienced PAL (n=55) and those who did not (n=1,261). Propensity score matching was conducted at a 1:4 ratio, resulting in 49 patients in the PAL group and 189 in the non-PAL group. Changes in pulmonary function were compared among preoperative, 6-month postoperative, and 12-month postoperative measurements between the 2 groups.
Results:
The variables used for propensity score matching included age, sex, smoking history, body mass index, baseline pulmonary function, pathologic stage, and surgical approach. All standardized mean differences were less than 0.1. Six months postoperatively, the PAL group showed a greater reduction in both forced expiratory volume in 1 second(FEV1 ) (-13.0% vs. -10.0%, p=0.041) and forced vital capacity (FVC) (-15.0% vs. -9.0%, p<0.001)than the non-PAL group. In cases of upper lobectomy, there were no significant differencesin FEV 1 changes between the PAL and non-PAL groups at both 6 and 12 months. However, in lower lobectomy, the PAL group demonstrated a more pronounced decrease in FEV1(-14.0% vs. -11.0%, p=0.057) and FVC (-20.0% vs. -13.0%, p=0.006) than the non-PAL group at 6 months postoperatively.
Conclusion
Postoperative PAL delayed the recovery of pulmonary function after lobectomy. These effects were markedly more pronounced after lower lobectomy than after upper lobectomy.
9.Different DLCO Parameters as Predictors of PostoperativePulmonary Complications in Mild Chronic Obstructive Pulmonary Disease Patients with Lung Cancer
Mil Hoo KIM ; Joonseok LEE ; Joung Woo SON ; Beatrice Chia-Hui SHIH ; Woohyun JEONG ; Jae Hyun JEON ; Kwhanmien KIM ; Sanghoon JHEON ; Sukki CHO
Journal of Chest Surgery 2024;57(5):460-466
Background:
Numerous studies have investigated methods of predicting postoperative pulmonary complications (PPCs) in lung cancer surgery, with chronic obstructive pulmonary disease (COPD) and low forced expiratory volume in 1 second (FEV1 ) being recognized as risk factors. However, predicting complications in COPD patients with preserved FEV 1 poses challenges. This study considered various diffusing capacity of the lung for carbon monoxide (DLCO ) parameters as predictors of pulmonary complication risks in mild COPD patients undergoing lung resection.
Methods:
From January 2011 to December 2019, 2,798 patients undergoing segmentectomy or lobectomy for non-small cell lung cancer (NSCLC) were evaluated. Focusing on 709 mild COPD patients, excluding no COPD and moderate/severe cases, 3 models incorporating DLCO , predicted postoperative DLCO (ppoDLCO ), and DLCO divided by the alveolar volume (DLCO /VA) were created for logistic regression. The Akaike information criterion and Bayes information criterion were analyzed to assess model fit, with lower values considered more consistent with actual data.
Results:
Significantly higher proportions of men, current smokers, and patients who underwent an open approach were observed in the PPC group. In multivariable regression, male sex, an open approach, DLCO <80%, ppoDLCO <60%, and DLCO /VA <80% significantly influenced PPC occurrence. The model using DLCO /VA had the best fit.
Conclusion
Different DLCO parameters can predict PPCs in mild COPD patients after lung resection for NSCLC. The assessment of these factors using a multivariable logistic regression model suggested DLCO /VA as the most valuable predictor.
10.The Korean Society for Neuro-Oncology (KSNO) Guideline for the Management of Brain Tumor Patients During the Crisis Period: A Consensus Survey About Specific Clinical Scenarios (Version 2023.1)
Min-Sung KIM ; Se-Il GO ; Chan Woo WEE ; Min Ho LEE ; Seok-Gu KANG ; Kyeong-O GO ; Sae Min KWON ; Woohyun KIM ; Yun-Sik DHO ; Sung-Hye PARK ; Youngbeom SEO ; Sang Woo SONG ; Stephen AHN ; Hyuk-Jin OH ; Hong In YOON ; Sea-Won LEE ; Joo Ho LEE ; Kyung Rae CHO ; Jung Won CHOI ; Je Beom HONG ; Kihwan HWANG ; Chul-Kee PARK ; Do Hoon LIM ;
Brain Tumor Research and Treatment 2023;11(2):133-139
Background:
During the coronavirus disease 2019 (COVID-19) pandemic, there was a shortage of medical resources and the need for proper treatment guidelines for brain tumor patients became more pressing. Thus, the Korean Society for Neuro-Oncology (KSNO), a multidisciplinary academic society, has undertaken efforts to develop a guideline that is tailored to the domestic situation and that can be used in similar crisis situations in the future. As part II of the guideline, this consensus survey is to suggest management options in specific clinical scenarios during the crisis period.
Methods:
The KSNO Guideline Working Group consisted of 22 multidisciplinary experts on neuro-oncology in Korea. In order to confirm a consensus reached by the experts, opinions on 5 specific clinical scenarios about the management of brain tumor patients during the crisis period were devised and asked. To build-up the consensus process, Delphi method was employed.
Results:
The summary of the final consensus from each scenario are as follows. For patients with newly diagnosed astrocytoma with isocitrate dehydrogenase (IDH)-mutant and oligodendroglioma with IDH-mutant/1p19q codeleted, observation was preferred for patients with low-risk, World Health Organization (WHO) grade 2, and Karnofsky Performance Scale (KPS) ≥60, while adjuvant radiotherapy alone was preferred for patients with high-risk, WHO grade 2, and KPS ≥60. For newly diagnosed patients with glioblastoma, the most preferred adjuvant treatment strategy after surgery was radiotherapy plus temozolomide except for patients aged ≥70 years with KPS of 60 and unmethylated MGMT promoters. In patients with symptomatic brain metastasis, the preferred treatment differed according to the number of brain metastasis and performance status. For patients with newly diagnosed atypical meningioma, adjuvant radiation was deferred in patients with older age, poor performance status, complete resection, or low mitotic count.
Conclusion
It is imperative that proper medical care for brain tumor patients be sustained and provided, even during the crisis period. The findings of this consensus survey will be a useful reference in determining appropriate treatment options for brain tumor patients in the specific clinical scenarios covered by the survey during the future crisis.

Result Analysis
Print
Save
E-mail