1.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
2.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
3.Bioactive metabolites: A clue to the link between MASLD and CKD?
Wen-Ying CHEN ; Jia-Hui ZHANG ; Li-Li CHEN ; Christopher D. BYRNE ; Giovanni TARGHER ; Liang LUO ; Yan NI ; Ming-Hua ZHENG ; Dan-Qin SUN
Clinical and Molecular Hepatology 2025;31(1):56-73
Metabolites produced as intermediaries or end-products of microbial metabolism provide crucial signals for health and diseases, such as metabolic dysfunction-associated steatotic liver disease (MASLD). These metabolites include products of the bacterial metabolism of dietary substrates, modification of host molecules (such as bile acids [BAs], trimethylamine-N-oxide, and short-chain fatty acids), or products directly derived from bacteria. Recent studies have provided new insights into the association between MASLD and the risk of developing chronic kidney disease (CKD). Furthermore, alterations in microbiota composition and metabolite profiles, notably altered BAs, have been described in studies investigating the association between MASLD and the risk of CKD. This narrative review discusses alterations of specific classes of metabolites, BAs, fructose, vitamin D, and microbiota composition that may be implicated in the link between MASLD and CKD.
4.Survey on the awareness and clinical application of guidelines for the prevention and treatment of chronic hepatitis B (2022 edition) among clinicians
Yuanyuan KONG ; Yujie GUO ; Yujuan GUAN ; Xuan LIANG ; Zhongjie HU ; Xiaobo LU ; Mingqin LU ; Yongfeng YANG ; Meifang HAN ; Hong YOU ; Zhiyun YANG ; Jidong JIA
Journal of Clinical Hepatology 2025;41(6):1068-1074
ObjectiveTo investigate the awareness and clinical practice of guidelines for the prevention and treatment of chronic hepatitis B (2022 edition) among clinicians. MethodsFrom July 19 to December 31, 2024, a self-designed electronic questionnaire was distributed via the WeChat mini program to collect related data from 1 588 clinicians nationwide, including their awareness and practice based on 18 questions regarding testing and referral, diagnosis and treatment, and follow-up. ResultsAmong all respondents, only 350 clinicians correctly understood all the updated key points of antiviral indications and treatment for special populations in the 2022 edition of guidelines for the prevention and treatment of chronic hepatitis B, with an overall awareness rate of 22.0%. Only 20% — 40% of the patients with positive HBV DNA and an age of >30 years receive antiviral therapy, while 80% — 100% of the patients with positive HBV DNA and a family history of hepatitis B cirrhosis or hepatocellular carcinoma receive antiviral therapy. The median follow-up rates at 1 year, 3 years, and 5 years were 67.5% 57.5% and 47.5%,respectively, showing a trend of gradual reduction, which might be associated with the influencing factors such as insufficient time for follow-up management by clinicians, insufficient awareness of the disease among patients, and poor adherence to follow-up. ConclusionThere is a gap between the awareness and practice of guidelines for the prevention and treatment of chronic hepatitis B (2022 edition) among clinicians. It is recommended to further strengthen training and focus on the whole process of “detection, diagnosis, treatment, and management” for patients with chronic hepatitis B in healthcare institutions, in order to promote the implementation of the guidelines.
5.Guidelines for the diagnosis and treatment of prurigo nodularis.
Li ZHANG ; Qingchun DIAO ; Xia DOU ; Hong FANG ; Songmei GENG ; Hao GUO ; Yaolong CHEN ; Chao JI ; Chengxin LI ; Linfeng LI ; Jie LI ; Jingyi LI ; Wei LI ; Zhiming LI ; Yunsheng LIANG ; Jianjun QIAO ; Zhiqiang SONG ; Qing SUN ; Juan TAO ; Fang WANG ; Zhiqiang XIE ; Jinhua XU ; Suling XU ; Hongwei YAN ; Xu YAO ; Jianzhong ZHANG ; Litao ZHANG ; Gang ZHU ; Fei HAO ; Xinghua GAO
Chinese Medical Journal 2025;138(22):2859-2861
6.Clinical correlation study between bone metabolism level and knee osteoarthritis pain.
Yong-Qi SUN ; Ke-Chun GUO ; Ze-Zhong LIU ; Jin-Shuai DUAN ; Bing XU ; Guo-Gang LUO ; Xian-Liang LAI ; Xiao-Feng WANG
China Journal of Orthopaedics and Traumatology 2025;38(5):482-486
OBJECTIVE:
To investigate the variability of bone metabolism levels among different populations and its association with knee osteoarthritis (KOA) pain.
METHODS:
A total of 50 people (control group) who participated in physical examination from January 2023 to June 2023 were selected, including 26 males and 24 females, wtih a mean aged of (52.14±9.04) years old ranging 41 to 65 years old. The other 50 patients with knee osteoarthritis(case group) who attended the outpatient clinic of the Orthopedics and Traumatology Department in the same time period, including 19 males and 31 females, with a mean age of (53.60±7.76) years old ranging 40 to 65 years. The two groups of Western Ontario and McMaster Universities Osteoarthritis Index(WOMAC) and bone metabolism markers, such as 25-hydroxy-cholecalciferol[25(OH)D], β-isomerized typeⅠcollagen C-telopeptide breakdown products (β-CTX), total typeⅠprocollagen N-terminal propeptide (t-PINP), osteocalcin (OC), parathormone (PTH) levels were compared. Pearson correlation analysis was used to compare the correlation between two groups of bone metabolism related markers and WOMAC.
RESULTS:
The WOMAC score of the case group (39.90±2.34) was higher than that of the control group (3.60±0.57), with significant difference (P<0.05). There was no significant difference between the two groups of 25 (OH)D, β-CTX and PTH (P>0.05). The t-PINP and OC of the case group were (62.90±52.40) and (19.88±10.15) ng·ml-1, respectively, and those of the control group were (38.86±10.82) and (14.90±3.62) ng·ml-1, respectively;the t-PINP and OC of the case group were higher than those of the control group, with significant difference (P<0.05). Pearson correlation analysis showed that t-PINP was positively correlated with WOMAC pain score in the case group (r2=0.045, P<0.01).
CONCLUSION
Bone metabolism levels in the serum of patients with knee osteoarthritis are different from those of healthy people, and the difference between OC and t-PINP is the most obvious, and the concentration of t-PINP levels is positively correlated with pain symptoms in patients with KOA. However, the specific mechanism of correlation between the bone metabolism levels of patients with KOA and their pain symptoms needs to be further elucidated by basic experimental research as well as by enlarging the samples.
Humans
;
Female
;
Male
;
Middle Aged
;
Osteoarthritis, Knee/metabolism*
;
Aged
;
Adult
;
Bone and Bones/metabolism*
;
Pain/etiology*
;
Biomarkers/metabolism*
7.A finite element method biomechanical study of a new type of composite anterior cervical internal fixation methods.
Zhi-Peng HOU ; Sen-Qi YE ; Ji-Hui ZHANG ; Liu-Jun ZHAO ; Yong-Jie GU ; Liang YU
China Journal of Orthopaedics and Traumatology 2025;38(11):1156-1163
OBJECTIVE:
To compare the biomechanical properties of four internal fixation methods in a lower cervical spine injury model using the finite element method.
METHODS:
Cervical CT data of a 28-year-old healthy adult male were utilized to establish a finite element model of the normal cervical spine and a lower cervical spine three-column injury model. Four internal fixation methods were then applied to the three-column injury model, resulting in four groups:Group A, anterior cervical locked-plate(ACLP) fixation system model(anterior approach);Group B, posterior cervical pedicle screw fixation model (posterior approach);Group C, combined anterior and posterior cervical pedicle screw fixation model; Group D, Novel composite anterior cervical internal fixation model. A 75 N axial compressive load and a 1.0 N·m pure moment were applied to the upper surface of the cervical spine model to simulate flexion, extension, rotation, and lateral bending movements. The intervertebral range of motion(ROM) and stress distribution of the internal fixators under different motion conditions were compared across all models.
RESULTS:
Compared with the normal model, the reductions in overall intervertebral ROM for each group under flexion, extension, rotation, and lateral bending were as follows:Group A, 24.04°, 23.12°, 6.24°, and 9.06°;Group B, 24.42°, 24.34°, 6.48°, and 9.20°;Group C, 25.43°, 25.29°, 7.17°, and 9.57°;Group D, 24.75°, 25.5°, 6.71°, and 9.12°. The peak stress values of the internal fixators in each group were:Group A, 53.9 MPa, 79.9 MPa, 61.4 MPa, and 80.3 MPa;Group B, 218.3 MPa, 105.4 MPa, 206.6 MPa, and 186.8 MPa;Group C, 40.8 MPa, 97.2 MPa, 47.1 MPa, and 39.4 MPa;Group D, 93.0 MPa, 144.0 MPa, 64.8 MPa, and 106.3 MPa.
CONCLUSION
The biomechanical properties of the novel composite anterior cervical internal fixation method are similar to those of the combined anterior-posterior fixation method, and superior to both the anterior cervical ACLP plate-screw fixation and posterior cervical pedicle screw fixation methods.
Humans
;
Finite Element Analysis
;
Cervical Vertebrae/physiopathology*
;
Male
;
Biomechanical Phenomena
;
Adult
;
Fracture Fixation, Internal/methods*
;
Range of Motion, Articular
8.A prognostic model for multiple myeloma based on lipid metabolism related genes.
Zhengjiang LI ; Liang ZHAO ; Fangming SHI ; Jiaojiao GUO ; Wen ZHOU
Journal of Central South University(Medical Sciences) 2025;50(4):517-530
OBJECTIVES:
Multiple myeloma (MM) is a highly heterogeneous hematologic malignancy, with disease progression driven by cytogenetic abnormalities and a complex bone marrow microenvironment. This study aims to construct a prognostic model for MM based on transcriptomic data and lipid metabolism related genes (LRGs), and to identify potential drug targets for high-risk patients to support clinical decision-making.
METHODS:
In this study, 2 transcriptomic datasets covering 985 newly diagnosed MM patients were retrieved from the Gene Expression Omnibus (GEO) database. Univariate Cox regression and 101 machine learning algorithms were used for gene selection. An LRG-based prognostic model was constructed using Stepwise Cox (both directions) and random survival forest (RSF) algorithms. The association between the prognostic score and clinical events was evaluated, and model performance was assessed using time-dependent receiver operating characteristic (ROC) curves and the C-index. The added predictive value of combining prognostic scores with clinical variables and staging systems was also analyzed. Differentially expressed genes between high- and low-risk groups were identified using limma and clusterProfiler and subjected to pathway enrichment analysis. Drug sensitivity analysis was conducted using the Genomics of Drug Sensitivity in Cancer (GDSC) database and oncoPredict to identify potential therapeutic targets for high-risk patients. The functional role of key LRGs in the model was validated via in vitro cell experiments.
RESULTS:
An LRG-based prognostic model (LRG17) was successfully developed using transcriptomic data and machine learning. The model demonstrated robust predictive performance, with area under the curve (AUC) values of 0.962, 0.912, and 0.842 for 3-, 5-, and 7-year survival, respectively. Patients were stratified into high- and low-risk groups, with high-risk patients showing significantly shorter overall survival (OS) and event-free survival (EFS) (both P<0.001) and worse clinical profiles (e.g., lower albumin, higher β2-microglobulin and lactate dehydrogenase levels). Enrichment analysis revealed that high-risk patients were significantly enriched for pathways related to chromosome segregation and mitosis, whereas low-risk patients were enriched for immune response and immune cell activation pathways. Drug screening suggested that AURKA inhibitor BMS-754807 and FGFR3 inhibitor I-BET-762 may be more effective in high-risk patients. Functional assays demonstrated that silencing of key LRG PLA2G4A significantly inhibited cell viability and induced apoptosis.
CONCLUSIONS
LRGs serve as promising biomarkers for prognosis prediction and risk stratification in MM. The overexpression of chromosomal instability-related and high-risk genetic event-associated genes in high-risk patients may explain their poorer outcomes. Given the observed resistance to bortezomib and lenalidomide in high-risk patients, combination therapies involving BMS-754807 or I-BET-762 may represent effective alternatives.
Humans
;
Multiple Myeloma/mortality*
;
Prognosis
;
Lipid Metabolism/genetics*
;
Transcriptome
;
Machine Learning
;
Male
;
Female
;
Gene Expression Profiling
;
Algorithms
9.Risk factors for multiple myeloma and its precursor diseases.
Wanyun MA ; Liang ZHAO ; Wen ZHOU
Journal of Central South University(Medical Sciences) 2025;50(4):560-572
Multiple myeloma (MM) is a common hematologic malignancy that originates from precursor conditions such as monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM). Identifying its risk factors is crucial for early intervention. The etiology of MM is multifactorial, involving race, familial clustering, gender, age, obesity, cytogenetic abnormalities, and environmental exposures. Among these, cytogenetic abnormalities and modifiable factors play pivotal roles in MM pathogenesis and progression. 1) cytogenetic abnormalities. Primary abnormalities [e.g., hyperdiploidy, t(11;14), t(14;16)] emerge at the MGUS stage, while secondary abnormalities [e.g., 1q+, del(17p)] drive disease progression. The accumulation of 1q+ promotes clonal evolution, and del(17p) is associated with significantly reduced survival. 2) modifiable risk factors. Obesity promotes MM via the acetyl-CoA synthetase 2 (ACSS2)-interferon regulatory factor 4 (IRF4) pathway. Vitamin D deficiency weakens immune surveillance. Exposure to herbicides such as Agent Orange and glyphosate increases MGUS incidence. Insufficient UV exposure, by reducing vitamin D synthesis, elevates MM risk. Gut microbiota dysbiosis (enrichment of nitrogen-cycle bacteria and depletion of short-chain fatty acids producers) induces chromosomal instability through the ammonium ion-solute carrier family 12 member 22 (SLC12A2)-NEK2 axis. Therefore, risk-based screening among high-risk populations (e.g., those who are obese, elderly, or chemically exposed), along with early interventions targeting cytogenetic abnormalities [e.g., B cell lymphoma 2 (Bcl-2) inhibitors for t(11;14), ferroptosis inducers for t(4;14)] and modifiable factors (e.g., vitamin D supplementation, gut microbiota modulation), may effectively delay disease progression and improve prognosis.
Humans
;
Multiple Myeloma/epidemiology*
;
Risk Factors
;
Obesity/complications*
;
Chromosome Aberrations
;
Monoclonal Gammopathy of Undetermined Significance/etiology*
;
Gastrointestinal Microbiome
;
Vitamin D Deficiency/complications*
;
Precancerous Conditions/genetics*
10.YOD1 regulates microglial homeostasis by deubiquitinating MYH9 to promote the pathogenesis of Alzheimer's disease.
Jinfeng SUN ; Fan CHEN ; Lingyu SHE ; Yuqing ZENG ; Hao TANG ; Bozhi YE ; Wenhua ZHENG ; Li XIONG ; Liwei LI ; Luyao LI ; Qin YU ; Linjie CHEN ; Wei WANG ; Guang LIANG ; Xia ZHAO
Acta Pharmaceutica Sinica B 2025;15(1):331-348
Alzheimer's disease (AD) is the major form of dementia in the elderly and is closely related to the toxic effects of microglia sustained activation. In AD, sustained microglial activation triggers impaired synaptic pruning, neuroinflammation, neurotoxicity, and cognitive deficits. Accumulating evidence has demonstrated that aberrant expression of deubiquitinating enzymes is associated with regulating microglia function. Here, we use RNA sequencing to identify a deubiquitinase YOD1 as a regulator of microglial function and AD pathology. Further study showed that YOD1 knockout significantly improved the migration, phagocytosis, and inflammatory response of microglia, thereby improving the cognitive impairment of AD model mice. Through LC-MS/MS analysis combined with Co-IP, we found that Myosin heavy chain 9 (MYH9), a key regulator maintaining microglia homeostasis, is an interacting protein of YOD1. Mechanistically, YOD1 binds to MYH9 and maintains its stability by removing the K48 ubiquitin chain from MYH9, thereby mediating the microglia polarization signaling pathway to mediate microglia homeostasis. Taken together, our study reveals a specific role of microglial YOD1 in mediating microglia homeostasis and AD pathology, which provides a potential strategy for targeting microglia to treat AD.

Result Analysis
Print
Save
E-mail