1.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
2.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
3.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
4.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
5.Mebendazole effectively overcomes imatinib resistance by dualtargeting BCR/ABL oncoprotein and ββ-tubulin in chronic myeloid leukemia cells
Li YANG ; Zhuanyun DU ; Yuhang PENG ; Wenyao ZHANG ; Wenli FENG ; Ying YUAN
The Korean Journal of Physiology and Pharmacology 2025;29(1):67-81
To target the pivotal BCR/ABL oncoprotein in chronic myeloid leukemia (CML) cells, tyrosine kinase inhibitors (TKIs) are utilized as landmark achievements in CML therapy. However, TKI resistance and intolerance remain principal obstacles in the treatment of CML patients. In recent years, drug repositioning provided alternative and promising perspectives apart from the classical cancer therapies, and promoted anthelmintic mebendazole (MBZ) as an effective anti-cancer drug in various cancers. Here, we investigated the role of MBZ in CML treatment including imatinib-resistant CML cells. Our results proved that MBZ inhibited the proliferation and induced apoptosis in CML cells. We found that MBZ effectively suppressed BCR/ABL kinase activity and MEK/ERK signaling pathway by reducing p-BCR/ABL and p-ERK levels with ABL1 targeting ability. Meanwhile, MBZ directly targeted the colchicine-binding site of β-tubulin protein, hampered microtubule polymerization and induced mitosis arrest and mitotic catastrophe. In addition, MBZ increased DNA damage levels and hampered the accumulation of ataxia-telangiectasia mutated and DNA-dependent protein kinase into the nucleus. This work discovered that anthelmintic MBZ exerts remarkable anticancer effects in both imatinib-sensitive and imatinib-resistant CML cells in vitro and revealed mechanisms underlying. From the perspective of drug repositioning and multi‐target therapeutic strategy, this study provides a promising option for CML treatment, especially in TKI-resistant or intolerant individuals.
6.Equivalence of SYN008 versus omalizumab in patients with refractory chronic spontaneous urticaria: A multicenter, randomized, double-blind, parallel-group, active-controlled phase III study.
Jingyi LI ; Yunsheng LIANG ; Wenli FENG ; Liehua DENG ; Hong FANG ; Chao JI ; Youkun LIN ; Furen ZHANG ; Rushan XIA ; Chunlei ZHANG ; Shuping GUO ; Mao LIN ; Yanling LI ; Shoumin ZHANG ; Xiaojing KANG ; Liuqing CHEN ; Zhiqiang SONG ; Xu YAO ; Chengxin LI ; Xiuping HAN ; Guoxiang GUO ; Qing GUO ; Xinsuo DUAN ; Jie LI ; Juan SU ; Shanshan LI ; Qing SUN ; Juan TAO ; Yangfeng DING ; Danqi DENG ; Fuqiu LI ; Haiyun SUO ; Shunquan WU ; Jingbo QIU ; Hongmei LUO ; Linfeng LI ; Ruoyu LI
Chinese Medical Journal 2025;138(16):2040-2042
7.Guidelines for clinical diagnosis and treatment of Pneumocystis jirovecii pneumonia after kidney transplantation in China
Branch of Organ Transplantation of Chinese Medical Association ; Zhen WANG ; Xiaofeng SHI ; Jianming ZHENG ; Gang FENG ; Jie ZHAO ; Wenli SONG
Organ Transplantation 2024;15(5):726-736
After kidney transplantation,the recipients have been under long-term immunosuppression due to the use of immunosuppressive drugs,and they are high-risk population of Pneumocystis jirovecii pneumonia(PJP).The risk of PJP is the highest within 6 months after kidney transplantation and after intensified anti-rejection therapy.Fever,dry cough,progressive dyspnea and hypoxemia are common clinical manifestations of PJP after kidney transplantation.Trimethoprim-sulfamethoxazole(TMP-SMX)can effectively prevent and treat PJP,and significantly reduce the incidence rate and fatality of PJP.To standardize the diagnosis,treatment and prevention of PJP after kidney transplantation,Branch of Organ Transplantation of Chinese Medical Association organized relevant Chinese experts to formulate the"Guidelines for Clinical Diagnosis and Treatment of Pneumocystis Jirovecii Pneumonia After Kidney Transplantation in China"based on clinical concerns,aiming to provide guidance for the prevention and comprehensive clinical treatment of PJP after kidney transplantation.
8.Development and application of chemical reference materials
Yanchun FENG ; Wenli PEI ; Baoming NING ; Jifeng SHI
Journal of China Pharmaceutical University 2024;55(5):715-720
Chemical reference material(CRM)is an important material basis in the process of chemical drug research and development and quality control.This paper introduces the definition and classification of CRMs;the domestic and international regulations and guidelines for the research and development,production,management and use of CRMs by pharmaceutical companies and authoritative CRM issuing organizations;the common preparation methods and key technologies of CRM raw materials;and the technical requirements for the selection of raw materials for different types of CRMs.In addition,this paper also introduces the routine development process and data requirements for the candidate raw material to become a CRM after chemical structure verification,physical and chemical property analysis,homogeneity assessment,stability monitoring,and assignment.It also introduces the classical assignment method,mass balance method,in detail,to provide users of CRMs and the developers of new drugs with some technical references related to the development,application and management of CRMs in China.
9.The role and mechanism of vitamin D supplementation in an animal model of Hashimoto′s thyroiditis
Fang FANG ; Yaxin LIU ; Wenli FENG ; Hongwei JIA ; Qing HE ; Mei ZHU
Chinese Journal of Endocrinology and Metabolism 2024;40(6):515-520
Objective:To investigate the effect and mechanism of vitamin D supplementation on Hashimoto′s thyroiditis(HT).Methods:Female SD rats were randomly divided into four groups by random number table method: control group, experimental autoimmune thyroiditis(EAT) control model group(model group), low-dose(VD1 group) and high-dose(VD2 group) active vitamin D intervention groups. The morphology of thyroid cells, thyroid function, thyroid antibodies, various CD4 + T cells, and related cytokine levels among different groups were compared. Results:The levels of thyroid peroxidase antibody(TPOAb) and thyroid globulin antibody(TgAb) in model group were significantly higher than those in control group, while the levels of VD1 and VD2 groups were significantly lower than those in model group( P<0.05). Compared with control group, HE staining in model group showed severe damage of follicular epithelial cells; Compared with model group, the degree of atrophy and destruction of follicular epithelial cells in VD1 and VD2 groups were reduced. The proportion of helper T cell(Th)1 and Th17 cells and related cytokine levels in model group were significantly higher than those in control group, while those in VD1 and VD2 groups were lower than those in model group( P<0.05); The proportion of regulatory T cell(Treg) cells and related cytokine levels in model group were significantly lower than those in control group, while those in VD1 and VD2 groups were higher than those in model group( P<0.05). Conclusions:After supplementing with vitamin D, the levels of TPOAb and TgAb in EAT rats decreased, and the number of various CD4 + T cells and related cytokine levels tended towards normalization. This suggests that vitamin D may improve HT by regulating CD4 + T cell differentiation, providing a theoretical basis for the role of vitamin D supplementation in HT treatment.
10.A study of the dynamic evolution of macrophage infiltration behavior after acute carotid artery thrombosis
Shikai LI ; Jia LIANG ; Yanyan HE ; Qianhao DING ; Chenqing LI ; Yang LIU ; Yingpu FENG ; Wenli ZHAO ; Yumeng HUANG ; Lina SUO ; Tianxiao LI ; Yingkun HE
Chinese Journal of Cerebrovascular Diseases 2024;21(7):433-443
Objective To explore the changes in macrophage infiltration behavior during the dynamic evolution of thrombi following the formation of acute carotid artery thrombosis occlusion(ACTO).Methods 15 healthy male New Zealand rabbits were selected to establish an ACTO model by causing injury to the rabbit carotid artery using surgical sutures treated with ferric chloride.All rabbits were randomly divided into 5 groups according to the end-point time using the random number table method,namely 24-hour group,1 week group,4week group,8 week group,and 12week group postoperatively,with 3 rabbits in each group.At 24 hours post-operation,the ACTO model was examined by DS A.At 24 hours,1 week,4 weeks,8 weeks,and 12 weeks post-operation,samples were taken from the thrombotic arterial segment of the 3 rabbits in each group and embedded in paraffin.The thrombus samples were stained with hematoxylin-eosin(HE)and Martius scarlet blue(MSB)to analyze changes in thrombus morphology and composition(including red blood cells,fibrin and collagen fibers).Orbit Imaging Analysis software was used for semi-quantitative analysis of the thrombus composition components.Using immunohistochemistry to detect the distribution of MO and M2 macrophages in thrombi,aimed to summarize the dynamic evolution of thrombus morphology,composition,and macrophage infiltration behavior at different stages following ACTO occurrence.Results The 24-hour DSA results indicated that all experimental rabbits successfully established the ACTO model.(1)HE staining showed a continuous increase in thrombus size from 24 hours to 1 week.By 4 weeks,signs of thrombus dissolution appeared,and at 8 weeks,neovascularization was observed within the thrombus.By 12 weeks,signs of fibrosis were evident in the thrombus.(2)MSB staining revealed that during the acute phase of thrombus formation(within 24 hours after surgery),red blood cells were the predominant component initially,but after this period,fibrin and collagen fibers became the main components.(3)The detection results of MO macrophages showed that 24 hours after surgery,MO macrophages in the thrombus were not evenly distributed throughout the thrombus,but mainly gathered at the thrombus edge;at 1 week after surgery,the positive area percentage of MO macrophage in the thrombus increased compared with 24 hours after surgery(thrombus edge:[41.7±27.0]%vs.[24.6±16.7]%,thrombus core:[35.7±19.6]%vs.[11.1±10.4]%,all P<0.001),and evenly distributed within the thrombus;at 4 weeks after surgery,MO macrophages in the thrombus decreased compared with 1 week after surgery(thrombosis edge:[10.7±6.1]%vs.[41.7±27.0]%,thrombus core:[12.1±8.5]%vs.[35.7±19.6]%,all P<0.001),the differences were statistically significant.At 4,8,and 12 weeks after surgery,MO macrophages within the thrombus did not change significantly with time(thrombus edge:[10.7±6.1]%,[8.0±7.7]%,and[8.9±5.3]%;thrombus core:[12.1±8.5]%,[9.5±4.2]%,and[15.7±11.0]%),and the differences were not statistically significant(all P>0.05).In addition,at 12 weeks after surgery,MO macrophages at the thrombus edge was less than the thrombus core([8.9+5.3]%vs.[15.7±11.0]%,P<0.01).The detection results of M2 macrophages showed that 24 hours after surgery,M2 macrophages in the thrombus were widely distributed throughout the thrombus;at 1 week after surgery,the positive area percentage of M2 macrophages in the thrombus increased compared with 24 hours after surgery(thrombus edge:[22.1±11.3]%vs.[11.4±8.7]%,P<0.001;thrombus core:[24.5±9.8]%vs.[7.6±6.0]%,P<0.001);at 4 weeks after surgery,M2 macrophage in the thrombus decreased compared with 1 week after surgery(thrombosis edge:[10.6±3.7]%vs.[22.1±11.3]%,P<0.001;thrombus core:[9.2±4.3]%vs.[24.5±9.8]%,P<0.001);at 8 weeks after surgery,M2 macrophages in the thrombus increased compared with 4 weeks after surgery([17.9±8.8]%vs.[9.2±4.3]%,P<0.001),and the differences were statistically significant.However,M2 macrophages in the thrombus did not change significantly from 8 weeks to 12 weeks after surgery(thrombus edge:[9.4±6.3]%vs.[8.5±5.3]%,P>0.05;thrombus core:[17.9±8.8]%vs.[14.4±10.0]%,P>0.05).In addition,at 8 and 12 weeks after surgery,M2 macrophages in the thrombus core was greater than the thrombus edge(8 weeks after surgery:[17.9±8.8]%vs.[9.4±6.3]%,P<0.001;12weeks after surgery:[14.4±10.0]%vs.[8.5±5.3]%,P<0.001).Conclusions This study successfully established an ACTO animal model and demonstrated for the first time the dynamic evolution of macrophages within 12 weeks post-thrombus formation.Macrophages may played a significant role in both thrombus formation and fibrinolysis,as well as in the promotion of thrombus dissolution and the formation of new blood vessels within the thrombus which may potentially promote the spontaneous reperfusion of the occluded vessels.The results of this study need further verification.

Result Analysis
Print
Save
E-mail