1.Mitophagy regulates bone metabolism
Hanmin ZHU ; Song WANG ; Wenlin XIAO ; Wenjing ZHANG ; Xi ZHOU ; Ye HE ; Wei LI
Chinese Journal of Tissue Engineering Research 2025;29(8):1676-1683
BACKGROUND:In recent years,numerous studies have shown that autophagy and mitophagy play an important role in the regulation of bone metabolism.Under non-physiological conditions,mitophagy breaks the balance of bone metabolism and triggers metabolism disorders,which affect osteoblasts,osteoclasts,osteocytes,chondrocytes,bone marrow mesenchymal stem cells,etc. OBJECTIVE:To summarize the mechanism of mitophagy in regulating bone metabolic diseases and its application in clinical treatment. METHODS:PubMed,Web of Science,CNKI,WanFang and VIP databases were searched by computer using the keywords of"mitophagy,bone metabolism,osteoblasts,osteoclasts,osteocytes,chondrocytes,bone marrow mesenchymal stem cells"in English and Chinese.The search time was from 2008 to 2023.According to the inclusion criteria,90 articles were finally included for review and analysis. RESULTS AND CONCLUSION:Mitophagy promotes the generation of osteoblasts through SIRT1,PINK1/Parkin,FOXO3 and PI3K signaling pathways,while inhibiting osteoclast function through PINK1/Parkin and SIRT1 signaling pathways.Mitophagy leads to bone loss by increasing calcium phosphate particles and tissue protein kinase K in bone tissue.Mitophagy improves the function of chondrocytes through PINK1/Parkin,PI3K/AKT/mTOR and AMPK signaling pathways.Modulation of mitophagy shows great potential in the treatment of bone diseases,but there are still some issues to be further explored,such as different stages of drug-activated mitophagy,and the regulatory mechanisms of different signaling pathways.
2.Mechanism of Xinnao shutong capsule alleviating cerebral ischemia-reperfusion injury in rats by regulating ferroptosis
Huani LI ; Changhe LIU ; Xiaoyan GUO ; Xin ZHONG ; Wei ZHANG ; Wenjing GE
China Pharmacy 2025;36(3):306-311
OBJECTIVE To study the mechanism of Xinnao shutong capsule alleviating cerebral ischemia reperfusion injury (CIRI) in rats by regulating the ferroptosis pathway. METHODS SD rats were randomly divided into sham operation group, model group, Xinnao shutong low-dose, high-dose group (220, 440 mg/kg), Ginkgo biloba leaves extract group (positive control, 150 mg/kg). Each group of rats was orally administered with the corresponding medication/normal saline for 7 consecutive days. Transient occlusion of the middle cerebral artery was adopted to induce the CIRI model; the samples were taken 24 h after the operation; the cerebral infarction area of rats was detected, and the cerebral infarction rate was calculated. The pathological changes of brain tissues were observed, and the levels of lipid peroxide (LPO), malondialdehyde (MDA) and glutathione (GSH) in cerebral tissue were detected; mRNA and protein expressions of nuclear factor-erythroid 2-related factor 2 (Nrf2), heme oxygenase 1(HO-1) and glutathione peroxidase 4 (GPX4) were all detected in cerebral tissue of rats. RESULTS Compared with model group, the cerebral infarction rate, the content of total iron in cerebral tissue and serum level of LPO (except for Ginkgo biloba leaves extract group and Xinnao shutong low-dose group) were all decreased significantly in G. biloba leaves extract group and Xinnao shutong groups (P<0.05 or P<0.01); the serum level of GSH, the protein and mRNA expressions of Nrf2, HO-1 and GPX4 were all increased significantly (P<0.05 or P<0.01). The pathological damage to brain tissue was reduced, the number of nerve cells increased, the edema was alleviated, and the nuclear membrane was flattened. CONCLUSIONS Xinnao shutong capsule can inhibit ferroptosis and reduce CIRI, the mechanism of which may be associated with the activation of the Nrf2/HO-1/GPX4 signaling pathway.
3.Mechanism of Xiezhuo Jiedu Formula in Treating Ulcerative Colitis Through Pyroptosis Regulation Based on Bioinformatics and Animal Experiments
Qiang CHUAI ; Wenjing ZHAI ; Shijie REN ; Xiaomeng LANG ; Xin KANG ; Wenli WEI ; Jingyuan LIU ; Jianping LIU ; Jie REN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(16):105-113
ObjectiveThis study aims to explore the potential mechanism of the Xiezhuo Jiedu formula in regulating pyroptosis for the treatment of ulcerative colitis (UC) using bioinformatics and in vivo animal experiments. MethodsDifferentially expressed genes (DEGs) in colon tissues of UC patients were retrieved from the Gene Expression Omnibus (GEO) database. Pyroptosis-related genes were obtained from the GEO and GeneCards databases. The intersection of these datasets yielded pyroptosis-related DEGs (Pyro-DEGs). Pyro-DEGs were subjected to Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis using the Metascape database. A protein-protein interaction (PPI) network was constructed using the STRING database. Least absolute shrinkage and selection operator (LASSO) prediction model and receiver operating characteristic (ROC) analysis were conducted to identify core Pyro-DEGs with diagnostic and therapeutic potential. Immune infiltration analysis of the UC datasets was performed using the deconvolution method (CIBERSORT), along with correlation analysis with core Pyro-DEGs. Sixty male Sprague-Dawley (SD) rats were randomly divided into a control group, a model group, high-, medium-, and low-dose groups of Xiezhuo Jiedu formula (26.64, 13.32, 6.66 g·kg-1), and a mesalazine group (0.27 g·kg-1), with 10 rats in each group. UC was established by intrarectal administration of 3,5-trinitrobenzenesulfonic acid (TNBS) dissolved in ethanol. The control and model groups were given distilled water by gavage, while the treatment groups were administered the corresponding drugs for 7 consecutive days. Hematoxylin-eosin (HE) staining was used to observe the colon histopathology. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of inflammatory factors such as interleukin-1β (IL-1β), IL-10, IL-18, and transforming growth factor-β (TGF-β). Immunohistochemistry (IHC) and Western blot were applied to detect the expression of Caspase-1, gap junction alpha-1 protein (GJA1), peroxisome proliferator-activated receptor gamma (PPARG), and S100 calcium-binding protein A8 (S100A8). Real-time quantitative polymerase chain reaction (Real-time PCR) was utilized to measure mRNA expression of Caspase-1, GJA1, PPARG, and S100A8. Western blot was performed to assess protein expression levels of Caspase-1, GJA1, PPARG, and S100A8. ResultsGEO datasets GSE87466 and GSE87473 yielded 64 Pyro-DEGs. KEGG analysis indicated that these genes were enriched in the NOD-like receptor signaling pathway, tumor necrosis factor (TNF) signaling pathway, and hypoxia-inducible factor 1 (HIF-1) signaling pathway. Four core Pyro-DEGs (Caspase-1, GJA1, PPARG, and S100A8) were identified. Immune infiltration analysis showed that expression of these genes was positively correlated with mast cells, neutrophils, M0 macrophages, M1 macrophages, and dendritic cells. Animal experimental results indicated that compared with the control group, the model group had significantly increased levels of IL-1β and IL-18, significantly decreased levels of IL-10 and TGF-β. The model group showed enhanced Caspase-1, GJA1, and S100A8 staining, and significantly increased mRNA and protein expression of Caspase-1, GJA1, and S100A8 (P<0.01). In contrast, the expression of PPARG was reduced in the model group (P<0.01). After treatment, all dosage groups showed varying degrees of improvement (P<0.05, P<0.01), with the high-dose group showing the most significant improvement (P<0.01). ConclusionCaspase-1, GJA1, PPARG, and S100A8 are core Pyro-DEGs closely associated with the pathogenesis of UC. These genes may collaborate with immune cells such as mast cells, neutrophils, and M0 macrophages to mediate disease development. The Xiezhuo Jiedu formula may regulate the expression of core Pyro-DEGs through the NOD-like receptor, TNF, and HIF-1 core signaling pathways, thereby modulating immune homeostasis in UC rats and effectively alleviating UC.
4.Mediating effect of activities of daily living between pain and depressive symptoms in Chinese elderly
Shan JIANG ; Huaiju GE ; Wenyu SU ; Shihong DONG ; Weimin GUAN ; Qing YU ; Huiyu JIA ; Wenjing CHANG ; Jinglei ZHANG ; Kang ZHANG ; Guifeng MA ; Wentao WEI
Journal of Public Health and Preventive Medicine 2025;36(4):12-16
Objective To explore the mediating role of activities of daily living (ADL) in pain and depressive symptoms in the elderly in China. Methods Utilizing the data from 2020 China Health and Retirement Longitudinal Study, 4403 Chinese elderly individuals aged ≥ 60 years old were selected as the research subjects. Depression Scale (CES-D 10) of the Center for Epidemiological Survey and ADL scale were used in the study. The PROCESS4.1 macro was used to test the mediating effect of daily living activities between pain and depressive symptoms, and the Bootstrap method was applied for verification of the mediating variables. Results A total of 2368 cases of depressive symptoms were detected in the elderly in China, with a detection rate of 53.78%. Pain was positively correlated with depressive symptoms (r=0.27, P<0.01), and activities of daily living were negatively correlated with pain and depressive symptoms (r=-0.27, -0.337, P<0.01). The results showed that the total effect value of pain on depressive symptoms was 0.33, the direct effect value was 0.24, and the mediating effect value of daily living activities was 0.09, accounting for 27.27%. Conclusion Pain and activities of daily living are important factors influencing depressive symptoms in the elderly, and activities of daily living play a partial mediating role in the relationship between pain and depressive symptoms in the elderly.
5.Trend in disease burden of interstitial lung disease in China from 1990 to 2021
SUN Yuefeng ; GUO Sijia ; WEI Yuan ; HE Tiantian ; GUO An ; ZENG Zhaolu ; SUN Luyan ; DOU Wenjing ; SUN Zengtao
Journal of Preventive Medicine 2025;37(11):1124-1128
Objective:
To investigate the trend in disease burden of interstitial lung disease (ILD) in China from 1990 to 2021, so as to provide a reference for formulating prevention and control strategies for chronic respiratory diseases.
Methods:
Based on the Global Burden of Disease 2021 database, data on the number of incident cases, incidence, standardized incidence, number of deaths, mortality, standardized mortality, number of disability-adjusted life years (DALY), DALY rate, and standardized DALY rate of ILD in China were collected. The incidence, mortality, and DALY rate were used to analyze the disease burden of ILD. The estimated annual percentage change (EAPC) was employed to assess the trend in standardized incidence, standardized mortality, and standardized DALY rate of ILD from 1990 to 2021. Rate decomposition analysis was applied to identify the main contributing factors affecting the trend in disease burden.
Results:
In 2021, China reported 48 514 cases, 7 674 deaths, and 222 288 person-years of DALY due to ILD, representing increases of 155.43%, 159.70%, and 97.34%, respectively, compared with 1990. From 1990 to 2021, the standardized incidence and standardized mortality of ILD in China showed upward trends (EAPC=1.106% and 0.239%, both P<0.05), while the standardized DALY rate showed a downward trend (EAPC=-0.230%, P<0.05). From 1990 to 2021, the standardized incidence and standardized mortality among males showed upward trends (EAPC=1.199% and 0.520%, both P<0.05), while the trend in the standardized DALY rate was not statistically significant (P>0.05). Among females, the standardized incidence of ILD showed an upward trend (EAPC=0.966%, P<0.05), while the standardized mortality and standardized DALY rate showed downward trends (EAPC=-0.306% and -0.760%, both P<0.05). In 2021, the incidence, mortality, and DALY rate of ILD in China increased with age, peaking in the group aged ≥95 years at 14.84/105, 13.90/105, and 124.71/105, respectively. Across all age groups aged ≥55 years, the incidence, mortality, and DALY rate of ILD were consistently higher in males than in females. The increase in the number of incident cases, deaths, and DALY due to ILD in China from 1990 to 2021 was primarily influenced by population aging, with contribution rates of 42.65%, 68.25%, and 69.79%, respectively.
Conclusions
From 1990 to 2021, the incidence and mortality risk of ILD in China showed upward trends, while the disability risk demonstrated a downward trend. Males bore a heavier disease burden of ILD, and aging was identified as the primary factor contributing to the increased burden of ILD in China.
6.Paroxetine alleviates dendritic cell and T lymphocyte activation via GRK2-mediated PI3K-AKT signaling in rheumatoid arthritis.
Tingting LIU ; Chao JIN ; Jing SUN ; Lina ZHU ; Chun WANG ; Feng XIAO ; Xiaochang LIU ; Liying LV ; Xiaoke YANG ; Wenjing ZHOU ; Chao TAN ; Xianli WANG ; Wei WEI
Chinese Medical Journal 2025;138(4):441-451
BACKGROUND:
G protein-coupled receptor kinase 2 (GRK2) could participate in the regulation of diverse cells via interacting with non-G-protein-coupled receptors. In the present work, we explored how paroxetine, a GRK2 inhibitor, modulates the differentiation and activation of immune cells in rheumatoid arthritis (RA).
METHODS:
The blood samples of healthy individuals and RA patients were collected between July 2021 and March 2022 from the First Affiliated Hospital of Anhui Medical University. C57BL/6 mice were used to induce the collagen-induced arthritis (CIA) model. Flow cytometry analysis was used to characterize the differentiation and function of dendritic cells (DCs)/T cells. Co-immunoprecipitation was used to explore the specific molecular mechanism.
RESULTS:
In patients with RA, high expression of GRK2 in peripheral blood lymphocytes, accompanied by the increases of phosphatidylinositol 3 kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR). In animal model, a decrease in regulatory T cells (T regs ), an increase in the cluster of differentiation 8 positive (CD8 + ) T cells, and maturation of DCs were observed. Paroxetine, when used in vitro and in CIA mice, restrained the maturation of DCs and the differentiation of CD8 + T cells, and induced the proportion of T regs . Paroxetine inhibited the secretion of pro-inflammatory cytokines, the expression of C-C motif chemokine receptor 7 in DCs and T cells. Simultaneously, paroxetine upregulated the expression of programmed death ligand 1, and anti-inflammatory cytokines. Additionally, paroxetine inhibited the PI3K-AKT-mTOR metabolic pathway in both DCs and T cells. This was associated with a reduction in mitochondrial membrane potential and changes in the utilization of glucose and lipids, particularly in DCs. Paroxetine reversed PI3K-AKT pathway activation induced by 740 Y-P (a PI3K agonist) through inhibiting the interaction between GRK2 and PI3K in DCs and T cells.
CONCLUSION
Paroxetine exerts an immunosuppressive effect by targeting GRK2, which subsequently inhibits the metabolism-related PI3K-AKT-mTOR pathway of DCs and T cells in RA.
G-Protein-Coupled Receptor Kinase 2/metabolism*
;
Arthritis, Rheumatoid/immunology*
;
Animals
;
Dendritic Cells/metabolism*
;
Paroxetine/therapeutic use*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Mice
;
Humans
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Male
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Lymphocyte Activation/drug effects*
;
Female
;
T-Lymphocytes/metabolism*
;
Middle Aged
8.Effect of interferon induced transmembrane protein 1 ( IFITM1 ) upregulation to cytokine release syndrome in CAR-T-treated B-cell acute lymphoblastic leukemia.
Mengyi DU ; Yinqiang ZHANG ; Chenggong LI ; Fen ZHOU ; Wenjing LUO ; Lu TANG ; Jianghua WU ; Huiwen JIANG ; Qiuzhe WEI ; Cong LU ; Haiming KOU ; Yu HU ; Heng MEI
Chinese Medical Journal 2025;138(10):1242-1244
10.Extracellular vesicles as biomarkers and drug delivery systems for tumor.
Xue WANG ; Wenjing CHEN ; Wei ZENG ; Kuanhan FENG ; Yu ZHENG ; Ping WANG ; Fucai CHEN ; Wen ZHANG ; Liuqing DI ; Ruoning WANG
Acta Pharmaceutica Sinica B 2025;15(7):3460-3486
Extracellular vesicles (EVs) are crucial for facilitating intercellular communication, promoting cell migration, and orchestrating the immune response. Recently, EVs can diagnose and treat tumors. EVs can be measured as biomarkers to provide information about the type of disease and therapeutic efficacy. Furthermore, EVs with lower immunogenicity and better biocompatibility are natural carriers of chemicals and gene drugs. Herein, we review the molecular composition, biogenesis, and separation methods of EVs. We also highlight the important role of EVs from different origins as biomarkers and drug delivery systems in tumor therapy. Finally, we provide deep insights into how EVs play a role in reversing the immunosuppressive microenvironment.


Result Analysis
Print
Save
E-mail