1.Paroxetine alleviates dendritic cell and T lymphocyte activation via GRK2-mediated PI3K-AKT signaling in rheumatoid arthritis.
Tingting LIU ; Chao JIN ; Jing SUN ; Lina ZHU ; Chun WANG ; Feng XIAO ; Xiaochang LIU ; Liying LV ; Xiaoke YANG ; Wenjing ZHOU ; Chao TAN ; Xianli WANG ; Wei WEI
Chinese Medical Journal 2025;138(4):441-451
BACKGROUND:
G protein-coupled receptor kinase 2 (GRK2) could participate in the regulation of diverse cells via interacting with non-G-protein-coupled receptors. In the present work, we explored how paroxetine, a GRK2 inhibitor, modulates the differentiation and activation of immune cells in rheumatoid arthritis (RA).
METHODS:
The blood samples of healthy individuals and RA patients were collected between July 2021 and March 2022 from the First Affiliated Hospital of Anhui Medical University. C57BL/6 mice were used to induce the collagen-induced arthritis (CIA) model. Flow cytometry analysis was used to characterize the differentiation and function of dendritic cells (DCs)/T cells. Co-immunoprecipitation was used to explore the specific molecular mechanism.
RESULTS:
In patients with RA, high expression of GRK2 in peripheral blood lymphocytes, accompanied by the increases of phosphatidylinositol 3 kinase (PI3K), protein kinase B (AKT), and mammalian target of rapamycin (mTOR). In animal model, a decrease in regulatory T cells (T regs ), an increase in the cluster of differentiation 8 positive (CD8 + ) T cells, and maturation of DCs were observed. Paroxetine, when used in vitro and in CIA mice, restrained the maturation of DCs and the differentiation of CD8 + T cells, and induced the proportion of T regs . Paroxetine inhibited the secretion of pro-inflammatory cytokines, the expression of C-C motif chemokine receptor 7 in DCs and T cells. Simultaneously, paroxetine upregulated the expression of programmed death ligand 1, and anti-inflammatory cytokines. Additionally, paroxetine inhibited the PI3K-AKT-mTOR metabolic pathway in both DCs and T cells. This was associated with a reduction in mitochondrial membrane potential and changes in the utilization of glucose and lipids, particularly in DCs. Paroxetine reversed PI3K-AKT pathway activation induced by 740 Y-P (a PI3K agonist) through inhibiting the interaction between GRK2 and PI3K in DCs and T cells.
CONCLUSION
Paroxetine exerts an immunosuppressive effect by targeting GRK2, which subsequently inhibits the metabolism-related PI3K-AKT-mTOR pathway of DCs and T cells in RA.
G-Protein-Coupled Receptor Kinase 2/metabolism*
;
Arthritis, Rheumatoid/immunology*
;
Animals
;
Dendritic Cells/metabolism*
;
Paroxetine/therapeutic use*
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Mice
;
Humans
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
;
Male
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Lymphocyte Activation/drug effects*
;
Female
;
T-Lymphocytes/metabolism*
;
Middle Aged
2.Erratum: Author correction to "Up-regulation of glyclipid transfer protein by bicyclol causes spontaneous restriction of hepatitis C virus replication" Acta Pharm Sin B 9 (2019) 769-781.
Menghao HUANG ; Hu LI ; Rong XUE ; Jianrui LI ; Lihua WANG ; Junjun CHENG ; Zhouyi WU ; Wenjing LI ; Jinhua CHEN ; Xiaoqin LV ; Qiang LI ; Pei LAN ; Limin ZHAO ; Yongfeng YANG ; Zonggen PENG ; Jiandong JIANG
Acta Pharmaceutica Sinica B 2025;15(3):1721-1721
[This corrects the article DOI: 10.1016/j.apsb.2019.01.013.].
3.Artificial mesenchymal stem cell extracellular vesicles enhanced ischemic stroke treatment through targeted remodeling brain microvascular endothelial cells.
Shengnan LI ; Wei LV ; Jiangna XU ; Jiaqing YIN ; Yuqin CHEN ; Linfeng LIU ; Xiang CAO ; Wenjing LI ; Zhen LI ; Hua CHEN ; Hongliang XIN
Acta Pharmaceutica Sinica B 2025;15(8):4248-4264
Ischemic stroke is the leading cause of disability and mortality worldwide. The blood‒brain barrier (BBB) is the first line of defense after ischemic stroke. Disruption of the BBB induced by brain microvascular endothelial cells (BMECs) dysfunction is a key event that triggers secondary damage to the central nervous system, where blood-borne fluids and immune cells penetrate the brain parenchyma, causing cerebral edema and inflammatory response and further aggravating brain damage. Here, we develop a novel artificial mesenchymal stem cell (MSC) extracellular vesicles by integrating MSC membrane proteins into liposomal bilayers, which encapsulated miR-132-3p with protective effects on BMECs. The artificial extracellular vesicles (MSCo/miR-132-3p) had low immunogenicity to reduce non-specific clearance by the mononuclear phagocytosis system (MPS) and could target ischemia-injured BMECs. After internalization into the damaged BMECs, MSCo/miR-132-3p escaped the lysosomes via the HII phase transition of 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) and decreased cellular reactive oxygen species (ROS) and apoptosis levels by regulating the RASA1/RAS/PI3K/AKT signaling pathway. In the transient middle cerebral artery occlusion (tMCAO) models, MSCo/miR-132-3p targeted impaired brain regions (approximately 9 times the accumulation of plain liposomes at 12 h), reduced cerebral vascular disruption, protected BBB integrity, and decreased infarct volume (from 44.95% to 6.99%).
6.Development of a reference substance for live bacterial count of Streptococcicosis live vaccines.
Lingxiang XIN ; Xiuli WANG ; Wenjing LV ; Lianna ZANG ; Dongmei ZHU ; Ying LUO ; Yuan ZHANG ; Xiaoning LI ; Bo LIU ; Junping LI
Chinese Journal of Biotechnology 2021;37(7):2554-2562
This study attempts to develop a reference substance for the live bacteria count of Streptococcicosis live vaccines in order to evaluate the validity of live bacterial count in inspection and testing. We prepared a batch of live Streptococcus suis reference substance for live bacterial count, tested their physical property, purity, vacuum degree, remaining moisture, and determined their homogeneity, thermal stability and transportation stability. Moreover, we organized collaborative calibration to assign count values to the reference substance and determine the shelf life of the reference substance in 12 months. The results showed that the physical property, the purity, the remaining moisture and the vacuum degree of the reference substance were all in compliance with the requirements of the Chinese Veterinary Pharmacopoeia. The homogeneity test showed that the coefficient of variation of the count of the reference substance was less than 10%, indicating a good homogeneity. Transportation stability test showed that the reference substance remained active after 72 h transportation in summer and winter with the package of styrofoam boxes and ice packs. Thermal stability test showed that the reference substance could be stored for up to 3 months at -20 °C, or up to 21 days at 4 °C. According to the collaborative calibration, the reference vaccine was assigned a count value range of (8.5-12.1)×107 CFU/ampoule. The shelf life test showed that the reference substance was stable for 12 months when stored at -70 °C. The reference substance could provide a reference for the live bacterial count of Streptococcicosis live vaccines. Moreover, it could also be used as a reference to evaluate the quality of corresponding agar media.
Bacterial Load
;
Reference Standards
;
Vaccines, Attenuated
7.Cerebral regional and network characteristics in asthma patients: a resting-state fMRI study.
Siyi LI ; Peilin LV ; Min HE ; Wenjing ZHANG ; Jieke LIU ; Yao GONG ; Ting WANG ; Qiyong GONG ; Yulin JI ; Su LUI
Frontiers of Medicine 2020;14(6):792-801
Asthma is a serious health problem that involves not only the respiratory system but also the central nervous system. Previous studies identified either regional or network alterations in patients with asthma, but inconsistent results were obtained. A key question remains unclear: are the regional and neural network deficits related or are they two independent characteristics in asthma? Answering this question is the aim of this study. By collecting resting-state functional magnetic resonance imaging from 39 patients with asthma and 40 matched health controls, brain functional measures including regional activity (amplitude of low-frequency fluctuations) and neural network function (degree centrality (DC) and functional connectivity) were calculated to systematically characterize the functional alterations. Patients exhibited regional abnormities in the left angular gyrus, right precuneus, and inferior temporal gyrus within the default mode network. Network abnormalities involved both the sensorimotor network and visual network with key regions including the superior frontal gyrus and occipital lobes. Altered DC in the lingual gyrus was correlated with the degree of airway obstruction. This study elucidated different patterns of regional and network changes, thereby suggesting that the two parameters reflect different brain characteristics of asthma. These findings provide evidence for further understanding the potential cerebral alterations in the pathophysiology of asthma.
Asthma/diagnostic imaging*
;
Brain/diagnostic imaging*
;
Brain Mapping
;
Humans
;
Magnetic Resonance Imaging
8.Erratum: Author correction to 'Up-regulation of glycolipid transfer protein by bicyclol causes spontaneous restriction of hepatitis C virus replication' Acta Pharmaceutica Sinica B 9 (2019) 769-781.
Meng-Hao HUANG ; Hu LI ; Rong XUE ; Jianrui LI ; Lihua WANG ; Junjun CHENG ; Zhouyi WU ; Wenjing LI ; Jinhua CHEN ; Xiaoqin LV ; Qiang LI ; Pei LAN ; Limin ZHAO ; Yongfeng YANG ; Zonggen PENG ; Jiandong JIANG
Acta Pharmaceutica Sinica B 2020;10(1):195-196
[This corrects the article DOI: 10.1016/j.apsb.2019.01.013.].
9.Up-regulation of glycolipid transfer protein by bicyclol causes spontaneous restriction of hepatitis C virus replication.
Meng-Hao HUANG ; Hu LI ; Rong XUE ; Jianrui LI ; Lihua WANG ; Junjun CHENG ; Zhouyi WU ; Wenjing LI ; Jinhua CHEN ; Xiaoqin LV ; Qiang LI ; Pei LAN ; Limin ZHAO ; Yongfeng YANG ; Zonggen PENG ; Jiandong JIANG
Acta Pharmaceutica Sinica B 2019;9(4):769-781
Bicyclol is a synthetic drug for hepatoprotection in clinic since 2004. Preliminary clinical observations suggest that bicyclol might be active against hepatitis C virus (HCV) with unknown mechanism. Here, we showed that bicyclol significantly inhibited HCV replication and in hepatitis C patients. Using bicyclol as a probe, we identified glycolipid transfer protein (GLTP) to be a novel restrictive factor for HCV replication. The GLTP preferentially bound host vesicle-associated membrane protein-associated protein-A (VAP-A) in competition with the HCV NS5A, causing an interruption of the complex formation between VAP-A and HCV NS5A. As the formation of VAP-A/NS5A complex is essential for viral RNA replication, up-regulation of GLTP by bicyclol reduced the level of VAP-A/NS5A complex and thus inhibited HCV replication. Bicyclol also exhibited an inhibition on HCV variants resistant to direct-acting antiviral agents (DAAs) with an efficacy identical to that on wild type HCV. In combination with bicyclol, DAAs inhibited HCV replication in a synergistic fashion. GLTP appears to be a newly discovered host restrictive factor for HCV replication, Up-regulation of GLTP causes spontaneous restriction of HCV replication.
10.Application of atomic force microscopy-based single molecule force spectroscopy in G-quadruplex studies.
Wenjing LIU ; Tong SUN ; Ping ZHANG ; Lin LI ; Junhong LV ; Bin LI
Journal of Southern Medical University 2018;38(9):1107-1114
Telomere plays a crucial role in the physiological and pathological processes of cells. At the end of the telomere, the single-stranded DNA repeat sequence rich in guanine (G) folds in the presence of monovalent metal ions such as Na or K to form a G-quadruplex structure. This structure can not be extended by telomerase and inhibits the activity of telomerase, thus becoming a potential anticancer target. Stabilizing the formation of DNA G-quadruplex structures by small molecule ligands has become a new strategy for designing many anticancer drugs, and studying the interaction strength of these small molecule ligands with G-quadruplex is thus of particular importance for screening highly effective anticancer drugs. Single molecule force spectroscopy enables direct measurement of the interaction between small molecule ligands and G-quadruplexes. This review highlights the advances of single-molecule force spectroscopy based on atomic force microscopy in the study of the G quadruplex structure and its interaction with small molecule ligands, and summarizes the application and development trend of single molecule force spectrum technology in G quadruplex.

Result Analysis
Print
Save
E-mail