1.Analysis of Changes on Volatile Components of Ligusticum sinense cv. Chaxiong Rhizome Before and After Wine Processing Based on Electronic Nose and HS-GC-MS
Wen ZHANG ; Peng ZHENG ; Jiangshan ZHANG ; Xiaolin XIAO ; Zaodan WU ; Li XIN ; Wenhui GONG ; Jinlian ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):173-181
ObjectiveBy comparing the composition and content of volatile components in raw products, wine-washed products and wine-fried products of Ligusticum sinense cv. Chaxiong rhizome(LSCR), to investigate the influence of wine processing on the volatile components of LSCR, in order to provide a basis for the development of quality standards for LSCR and its processed products. MethodsElectronic nose was used to identify the odors of LSCR, wine-washed and wine-fried LSCR, and their volatile components were detected by headspace gas chromatography-mass spectrometry(HS-GC-MS), and the relative mass fractions of these components were determined by peak area normalization method. Principal component analysis(PCA) and orthogonal partial least squares-discriminant analysis(OPLS-DA) were performed on the obtained sample data by SIMCA 14.1 software, and the differential components of LSCR, wine-washed and wine-fried LSCR were screened according to the variable importance in the projection(VIP) value>1. Pearson correlation analysis was used to explore the relationship between volatile differential flavor components and electronic nose sensors. ResultsElectronic nose detection results showed that there were significant differences in the odors of LSCR, wine-washed and wine-fried LSCR, mainly reflected in the sensors S2, S4, S5, S6, S11, S12, S13. And a total of 62 compounds were identified from LSCR and its wine-processed products, among which 46, 50 and 51 compounds were identified from LSCR, wine-fried and wine-washed LSCR, respectively. There were 21 differential components between the raw products and wine-fried products, of which 10 components were increased and 11 were decreased after processing. There were 20 differential components between the raw products and wine-washed products, of which 11 constituents increased and 9 decreased after processing. There were 17 differential components between the wine-wash products and wine-fried products. Compared with the wine-washed products, the contents of 13 components in the wine-fried products increased, and the contents of 4 components decreased. The increasing trend of the content of phthalides in the wine-washed products was more obvious than that in the wine-fried products, but the content of total volatile components was higher in the wine-fried products than the wine-washed products. Correlation analysis showed that there were different degrees of correlation between the 7 differential sensors of electronic nose and 24 differential volatile components, mainly phthalides and olefins. ConclusionThe odor and the content of volatile components in LSCR changed obviously after wine processing, and n-butylphthalide, Z-butylidenephthalide and E-ligustilide can be used as the candidate differential markers of volatile components in LSCR before and after wine processing.
2.Effect of Erchen Decoction (二陈汤) on Serum Leptin and Expression of LepR,POMC,and NPY in Hypothalamus of Metabolic Syndrome Model Mice with Phlegm Syndrome
Menghan YANG ; Yuanyuan LI ; Xiujuan ZHENG ; Wenhui XIONG ; Xirui HUANG ; Bizhen GAO
Journal of Traditional Chinese Medicine 2025;66(9):948-954
ObjectiveTo explore the potential mechanism of Erchen Decoction (二陈汤, ECD) in improving metabolic syndrome (MS) with phlegm syndrome. MethodsForty mice were randomly divided into a blank group of 10 mice and a modeling group of 30 mice. The MS model with phlegm syndrome was induced in the modeling group by high-fat diet. Thirty successfully modeled mice were randomly divided into a model group, a ECD group, and a metformin group, with 10 mice in each group. The ECD group was given 0.4 g/(kg·d) of ECD, while the metformin group was intervened with 11.1 g/(kg·d) of metformin solution, and the blank group and the model group were given 0.02 ml/(g·d) of sterilized drinking water, all by gavage, once daily for 4 weeks. Body weight, abdominal circumfe-rence, body length, Lee's index and food intake were recorded. Blood glucose and blood lipid levels including fasting blood glucose, triglycerides (TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were measured. ELISA was used to detect serum leptin levels, while HE staining was used to observe liver pathological changes. Western Blot and q-PCR were used to detect protein and mRNA expression of hypothalamic leptin receptor (LepR), pro melanocortin (POMC), and neuropeptide Y (NPY) in the hypothalamus. Immunofluorescence was used to detect fluorescence expression of POMC and NPY in the hypothalamic arcuate nucleus region. ResultsPathological results showed that the mice in the model group had numerous fat vacuoles in hepatocytes and significant liver fat deposition, while the ECD and metformin groups showed reduced fat vacuoles and less liver fat deposition. Compared to those in the blank group, the mice in the model group mice showed liver fat deposition, increased body weight, abdominal circumference, Lee's index and food intake; fasting blood glucose, TG, TC, LDL-C, and serum leptin levels were elevated, while HDL-C was decreased; the expression of LepR, POMC protein levels and their mRNA expression decreased, while the protein level and mRNA expression of NPY increased; the fluorescence expression of POMC in the arcuate nucleus was reduced, while NPY fluorescence expression increased (P<0.05 or P<0.01). Compared to the model group, the ECD group and metformin group showed significant improvements in the above indicators (P<0.05 or P<0.01). Compared to the ECD group, the metformin group showed a reduction in body weight and NPY fluorescence expression, and an increase in HDL-C levels (P<0.05 or P<0.01). ConclusionECD can downregulate serum leptin levels and improve glucose and lipid metabolism in the MS of phlegm syndrome. Its mechanism of action may be to reduce liver fat deposition and thereafter affect the expression of neuropeptides related to feeding activity in the hypothalamus.
3.Obesity-related genes and genetic susceptibility to gastric cancer
Wenhui WU ; Shiyun DING ; Jingrao LI ; Ji ZHENG ; Jianing MAO ; Tianyi ZHU ; Yiling WU ; Ruoxin ZHANG
Shanghai Journal of Preventive Medicine 2025;37(7):569-580
ObjectiveTo explore the effects of genetic variation of obesity-related biological pathways and gene-obesity interactions on the incidence of gastric cancer, so as to better understand the pathogenesis of gastric cancer and help identify high-risk populations for individualized prevention of gastric cancer. MethodsA case-control study based on the Shanghai Suburban Adult Cohort and Biobank study (SSACB) was conducted on the cases with gastric cancer. A total of 267 cases with gastric cancer and 267 healthy controls matched 1∶1 by age and gender using propensity score were included in the study. After genome-wide genotyping, quality control and imputation, 19 250 single nucleotide polymorphism (SNP) sites from 115 genes in 4 obesity-related biological pathways were extracted. Univariate and multivariate logistic regression analyses were used to evaluate the association between these SNP sites and the risk of gastric cancer, and false positive report probability (FPRP) was used for multiple test correction.Data from Biobank Japan (BBJ) and FinnGen public accessible databases were used to validate significant SNP sites. For validated sites, expression quantitative trait loci (eQTL) analysis and differentially expressed genes analysis were further performed. Additive and multiplicative interactions were used to evaluate the gene-obesity interactions on the incidence of gastric cancer. Additive interaction evaluation indicators included relative excess risk due to interaction (RERI), attributable proportion due to interaction (AP) and synergy index (SI), while multiplicative interaction evaluation indicators include ORGxE and Pinter. ResultsA total of 41 SNP sites were significantly associated with the onset of gastric cancer (Padj<0.05, FPRP0.1<0.1), among which 7 groups of haplotype blocks were formed. ACACB/ rs2268401 [SSACB: P=0.005, BBJ: P=0.049], HRAS/ rs12785860 (SSACB: P<0.001, FinnGen: P=0.045), and PTPN1/ rs6095985 (SSACB: P<0.001, FinnGen: P=0.023) were significantly associated with the risk of gastric cancer after validation in different populations. Among which, the G allele of HRAS/ rs12785860 was correlated with the downregulation of HRAS mRNA expression (P<0.001), and the expression level of HRAS in gastric cancer tissues was higher than that in adjacent normal tissues (P<0.001). Additionaly, JAK1/rs11208559 showed a positive additive interaction with waist circumstance (WC) on the risk of gastric cancer [RERI=2.29(0.06~4.53), AP=0.57(0.23~0.90), SI=4.03(2.20~5.87)]. ConclusionObesity-related biological pathway SNP sites and their haplotypes are associated with the risk of gastric cancer, suggesting that genetic variations in obesity pathways may affect gastric cancer. The HRAS/ rs12785860 is significantly associated with downregulation of HRAS gene expression, which may serve as a potential genetic marker for gastric cancer. JAK1/rs11208559 interacts with obesity additively on the risk of gastric cancer. Individuals with GC+CC genotypes and pre-central or central obesity have an increased risk of gastric cancer, providing clues and evidences for individualized prevention of gastric cancer.
4.A Prospective Cohort Study on Soy Product Intake and the Risk of Lung Cancer Based on Shanghai Suburban Adult Cohort and Biobank.
Shiyun DING ; Wenhui WU ; Jianing MAO ; Jingrao LI ; Ji ZHENG ; Ye YAO ; Genming ZHAO ; Yiling WU ; Ruoxin ZHANG
Chinese Journal of Lung Cancer 2025;28(4):291-303
BACKGROUND:
Lung cancer is one of the malignant cancers with the highest incidence rate, and it is important to identify the factors contributing to lung cancer carcinogenesis for prevention. Lifestyle and genetic factors play important roles in cancer development, however the impact of dietary factors, such as soy product intake, on lung cancer risk remains inadequately understood. This study aims to explore the associations between soy product intake, genetic risk, and lung cancer incidence, and validate the consistent effects of soy product intake in European populations, thereby providing new insights for lung cancer prevention.
METHODS:
Utilizing the Shanghai Suburban Adult Cohort and Biobank (SSACB) (n=66,311), Cox proportional hazards model was adopted to assess the association between soy product intake and lung cancer incidents, followed by subgroup analyses stratified by gender, smoking status, and pathological types of lung cancer. The UK Biobank (UKB) was used for validation of the effect of soy product intake on lung cancer. To investigate the association between genetic factors and lung cancer, in addition to previously reported loci, we incorporated newly identified loci from two independent studies in Southeast China: a nested case-control population from the SSACB cohort (433 cases/650 controls) and a case-control study from the Shanghai Cancer Center-Taizhou cohort (1359 cases/1359 controls). Meta-analysis and Linkage disequilibrium clumping (LD clumping) of the association results identified 23 loci for polygenic risk score (PRS) construction. Subsequently, conditional Logistic regression model was used to assess the association between genetic risk and lung cancer.
RESULTS:
In SSACB cohort, after adjusting for age, gender, smoking, chronic bronchitis, body mass index (BMI), vegetable intake and red meat intake, sufficient soy product intake was significantly associated with a reduced risk of lung cancer [hazard ratio (HR)=0.60, 95%CI: 0.47-0.77, Padj=6.69E-05], an effect that was consistent in males and females, smokers and non-smokers. In UKB, although the association did not reach statistical significance, a protective trend against lung cancer was also observed (HR=0.76, 95%CI: 0.55-1.06, Padj=0.10). In the nested case-control population within SSACB, a PRS score generated in the Chinese population was significantly correlated with lung cancer risk. After adjustment of age, gender, smoking, chronic bronchitis, and soy product intake, the high-PRS group had a 1.88 times higher risk of lung cancer compared to the low-PRS group (Padj=1.84E-03).
CONCLUSIONS
The prospective cohort study found that adequate intake of soy products was significantly associated with a reduced risk of lung cancer, while a high PRS is a risk factor for lung cancer development. Integrating soy product intake and PRS into traditional epidemiological risk factor prediction will guide personalized lung cancer prevention and high-risk population stratification.
Humans
;
Lung Neoplasms/etiology*
;
Male
;
Female
;
China/epidemiology*
;
Middle Aged
;
Adult
;
Aged
;
Prospective Studies
;
Biological Specimen Banks
;
Risk Factors
;
Case-Control Studies
;
Cohort Studies
5.Inhibition of WAC alleviates the chondrocyte proinflammatory secretory phenotype and cartilage degradation via H2BK120ub1 and H3K27me3 coregulation.
Peitao XU ; Guiwen YE ; Xiaojun XU ; Zhidong LIU ; Wenhui YU ; Guan ZHENG ; Zepeng SU ; Jiajie LIN ; Yunshu CHE ; Yipeng ZENG ; Zhikun LI ; Pei FENG ; Qian CAO ; Zhongyu XIE ; Yanfeng WU ; Huiyong SHEN ; Jinteng LI
Acta Pharmaceutica Sinica B 2025;15(8):4064-4077
Several types of arthritis share the common feature that the generation of inflammatory mediators leads to joint cartilage degradation. However, the shared mechanism is largely unknown. H2BK120ub1 was reportedly involved in various inflammatory diseases but its role in the shared mechanism in inflammatory joint conditions remains elusive. The present study demonstrated that levels of cartilage degradation, H2BK120ub1, and its regulator WW domain-containing adapter protein with coiled-coil (WAC) were increased in cartilage in human rheumatoid arthritis (RA) and osteoarthritis (OA) patients as well as in experimental RA and OA mice. By regulating H2BK120ub1 and H3K27me3, WAC regulated the secretion of inflammatory and cartilage-degrading factors. WAC influenced the level of H3K27me3 by regulating nuclear entry of the H3K27 demethylase KDM6B, and acted as a key factor of the crosstalk between H2BK120ub1 and H3K27me3. The cartilage-specific knockout of WAC demonstrated the ability to alleviate cartilage degradation in collagen-induced arthritis (CIA) and collagenase-induced osteoarthritis (CIOA) mice. Through molecular docking and dynamic simulation, doxercalciferol was found to inhibit WAC and the development of cartilage degradation in the CIA and CIOA models. Our study demonstrated that WAC is a key factor of cartilage degradation in arthritis, and targeting WAC by doxercalciferol could be a viable therapeutic strategy for treating cartilage destruction in several types of arthritis.
6.Novel araucarene diterpenes from Agathis dammara exert hypoglycemic activity by promoting pancreatic β cell regeneration and glucose uptake.
Zhewei YU ; Yi ZHANG ; Wenhui WANG ; XinYi WU ; Shunzhi LIU ; Yanlin BIN ; Hongsheng LI ; Bangping CAI ; Zheng WANG ; Meijuan FANG ; Rong QI ; Mingyu LI ; Yingkun QIU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(4):492-503
In this study, araucarene diterpenes, characterized by a pimarene skeleton with a variably oxidized side chain at C-13, were investigated. A total of 16 araucarene diterpenoids and their derivatives were isolated from the woods of Agathis dammara, including 11 previously unreported compounds: dammaradione (1), dammarones D-G (2, 5, 14, 15), dammaric acids B-F (8-12), and dammarol (16). The structures of these new compounds were elucidated using high-resolution electrospray ionization mass spectroscopy (HR-ESI-MS) and one-dimensional/two-dimensional (1D/2D) nuclear magnetic resonance (NMR), while their absolute configurations were determined through the electronic circular dichroism (ECD) exciton chirality method and Snatzke's method. The hypoglycemic activity of all isolated compounds was evaluated using a transgenic zebrafish model, and a structure-activity relationship (SAR) analysis was conducted. Araucarone (3) and dammaric acid C (9), serving as representative compounds, demonstrated significant hypoglycemic effects on zebrafish. The primary mechanism involves the promotion of pancreatic β cell regeneration and glucose uptake. Specifically, these compounds enhance the differentiation of pancreatic endocrine precursor cells (PEP cells) into β cells in zebrafish.
Zebrafish
;
Animals
;
Diterpenes/isolation & purification*
;
Insulin-Secreting Cells/cytology*
;
Glucose/metabolism*
;
Hypoglycemic Agents/isolation & purification*
;
Molecular Structure
;
Structure-Activity Relationship
;
Plant Extracts/pharmacology*
;
Regeneration/drug effects*
7.Esthetic outcomes of socket-shield technique for immediate implantation in the maxillary anterior zone and its effect on gingival morphology
Yin LI ; Zheng CAO ; Wenhui JIANG
Chinese Journal of Primary Medicine and Pharmacy 2024;31(4):501-504
Objective:To investigate the esthetic outcomes of socket-shield technique (SST) for immediate implantation in the maxillary anterior zone and its effect on gingival morphology.Methods:This case-control study included 75 patients with maxillary anterior tooth defects who were treated at Huzhou Central Hospital between January 2019 and September 2021. Based on their respective treatment methods, these patients were divided into two groups: SST implantation ( n = 30) and immediate implantation ( n = 45). All patients were followed up for 1 year. During this period, the thickness of the labial plate, pink esthetic score, probing depth, and patient satisfaction were compared between the two groups. Results:At 6 and 12 months post-surgery, the SST group exhibited significantly lower labial plate bone resorption [(0.24 ± 0.07) mm, (0.41 ± 0.10) mm] compared with the immediate implantation group [(0.56 ± 0.11) mm, (0.86 ± 0.15) mm, t = 14.12, 14.41, both P < 0.001]. Furthermore, at both time points, the SST group scored significantly higher in curvature, height, color, and texture of the labial gingival margin using the pink esthetic score scale ( t6 months = 7.13, 6.38, 5.45, 4.92; t12 months = 3.43, 2.92, 7.50, 6.25, all P < 0.05). The mesial and distal papilla scores did not differ significantly between the SST and immediate implantation groups at various time points (all P > 0.05). However, at 6 months post-surgery, the periodontal probing depth in the SST group was (1.21 ± 0.06) mm, which was significantly lower than the corresponding value of (1.92 ± 0.07) mm in the immediate implantation group ( t = 45.49, P < 0.001). By 12 months post-surgery, no significant difference in periodontal probing depth was observed between the two groups ( P > 0.05). Additionally, there was no significant difference in patient satisfaction between the SST and immediate implantation groups ( P > 0.05). Conclusion:SST effectively addresses insufficient labial bone mass and prevents bone resorption. Additionally, it is advantageous for restoring the morphology of the labial alveolar process and soft tissue level. Clinically, its application produces similar results to immediate implantation.
8.Improvement effects of 3,5,6,7,8,3′,4′-heptamethoxyflavone of Fructus Aurantii on rats with damp blockage of the middle energizer
Wenhui GONG ; Yating XIE ; Li XIN ; Shihao YAN ; Beibei ZHAO ; Yuqing ZHENG ; Jingying GUO ; Jie SHANG ; Peng ZHENG ; Jinlian ZHANG
China Pharmacy 2024;35(7):819-824
OBJECTIVE To investigate the improvement effects of 3,5,6,7,8,3′,4′-heptamethoxyflavone (HMF) of Fructus Aurantii on rats with damp blockage of the middle energizer. METHODS The rats were randomly divided into normal group, model group, positive control group (Raceanisodamine tablet, 1 mg/kg), HMF low-dose, medium-dose and high-dose groups (0.3, 0.6, 0.9 mg/kg), with 7 rats in each group. Except for the normal group, the other groups were modeled by internal and external composite factors. After successful modeling, the rats in each group were given the corresponding drug or normal saline, once a day, for 14 days. The general behavioral states such as dietary intake, water intake and mental state of the rats were observed, and the fecal water content rate and saliva flow rate were measured. Hematoxylin-eosin (HE) staining was used to observe the pathological and morphology in gastric and small intestinal tissues of rats. The plasma content of aldosterone was detected, and the expression of aquaporins (AQP3) in the gastric tissue of rats was determined. RESULTS Compared with the normal group, the dietary intake and water intake of the model group rats were significantly decreased (P<0.01), the fecal water content rate, salivary flow rate, plasma content of aldosterone and the expression of AQP3 in gastric tissue were increased significantly (P<0.01). Gastric tissue injury invaded the mucosal muscle layer, resulting in mucosal muscle layer rupture; pathological and morphological changes such as small intestinal villous erosion and glandular structure destruction were observed in the small intestine. Compared with the model group, the dietary intake and water intake of rats were increased in HMF groups; fecal water content rate, salivary flow rate, plasma content of aldosterone, the expression of AQP3 in gastric tissue were decreased, most of the above differences were statistically significant (P<0.05 or P<0.01). The pathological and morphological changes in the gastric and small intestine tissues of rats had been improved to varying degrees. CONCLUSIONS HMF of Fructus Aurantii with dry property HMF could improve the symptoms of rats with damp blockage of middle energizer, the mechanism of which may be associated with reducing the content of plasma aldosterone and down-regulating the expression of gastric AQP3.
9.Ameliorative effect and mechanism of curcumin on diabetes model rats with depression
Hongyan ZHANG ; Yuping ZHANG ; Yanjiao ZHANG ; Jingjing ZHENG ; Rui BIAN ; Wenhui LI ; Weidong REN
China Pharmacy 2024;35(8):942-947
OBJECTIVE To study the ameliorative effect and potential mechanism of curcumin on diabetes model rats with depression based on cAMP response element binding protein (CREB)/brain-derived neurotrophic factor (BDNF) signaling pathway. METHODS The diabetes model rat with depression was established by high fat and high sugar diet+intraperitoneal injection of streptozotocin+chronic unpredictable stress-induced depression. The successfully modeled rats were randomly divided into model group, positive control group (0.18 g/kg metformin and 1.8 mg/kg fluoxetine, gavage), curcumin low-dose and high-dose groups (30, 60 mg/kg, gavage) and curcumin high-dose+CREB inhibitor group [60 mg/kg curcumin (gavage)+5 mg/kg CREB inhibitor 666-15 (intraperitoneal injection)], with 12 rats in each group. Another 12 healthy rats were selected as the normal group. Each group was given a corresponding intervention for 4 weeks, the fasting blood glucose level of rats was detected, and the depression of rats was assessed. The levels of corticosterone (CORT) and inflammatory factors [tumor necrosis factor-α (TNF-α), interleukin- 1β (IL-1β), IL-6] in serum, and the levels of norepinephrine (NE) and 5-hydroxytryptamine (5-HT) in hippocampal tissue were determined. The pathological changes and neuronal apoptosis were observed in the hippocampal tissue of rats in each group; the expression levels of CREB, BDNF mRNA and protein in hippocampal tissue were detected. RESULTS Compared with the normal group, the hippocampal tissue of rats in the model group was severely damaged, and neurons were scattered, while the fasting blood glucose, the forced swimming immobility time, the tail suspension immobility time, serum levels of CORT, TNF-α, IL-1β and IL-6, and neuron apoptosis indexes were all increased or prolonged significantly (P<0.05). The levels of NE and 5-HT, the number of surviving neurons, and the expression levels of CREB and BDNF mRNA and protein in hippocampal tissue were decreased significantly (P<0.05). Compared with the 的model group, the damage to hippocampal tissue was relieved in the positive control group and curcumin groups, while the above indexes were improved significantly (P<0.05). The improvement effect of curcumin high-dose group was better than that of curcumin low-dose group (P<0.05). CREB inhibitor could significantly reverse the ameliorative effect of high-dose curcumin on the model rats (P<0.05). CONCLUSIONS Curcumin can improve the depression of diabetes model rats with depression, and relieve neuronal damage and inflammatory response, the mechanism of which may be associated with activating CREB/BDNF signaling pathway.
10.Investigation on Preventive Effect of Total Saponins of Notoginseng Radix et Rhizoma on Aspirin-induced Small Intestine Injury Based on Serum Metabolomics
Wenhui LIU ; Guodong HUA ; Baochen ZHU ; Ruoyu GAO ; Xin HUANG ; Meng WANG ; Zheng LIU ; Jiaojiao CHENG ; Zhibin SONG ; Jingui WANG ; Chunmiao XUE
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(22):196-203
ObjectiveMetabolomics was utilized to investigate the preventive effect of notoginseng total saponins(NTS) on aspirin(acetyl salicylic acid, ASA)-induced small bowel injury in rats. MethodFifty male SD rats were randomly divided into normal and model groups, NTS high-dose and low-dose groups(62.5, 31.25 mg·kg-1), and positive drug group(omeprazole 2.08 mg·kg-1+rebamipide 31.25 mg·kg-1), with 10 rats in each group. Except for the normal group, rats in other groups were given ASA enteric-coated pellets 10.41 mg·kg-1 daily to establish a small intestine injury model. On this basis, each medication group was gavaged daily with the corresponding dose of drug, and the normal group and the model group were gavaged with an equal amount of drinking water. Changes in body mass and fecal characteristics of rats were recorded and scored during the period. After 14 weeks of administration, small intestinal tissues of each group were taken for hematoxylin-eosin(HE) staining, scanning electron microscopy to observe the damage, and the apparent damage of small intestine was scored. Serum from rats in the normal group, the model group, and the NTS high-dose group was taken and analyzed for metabolomics by ultra-performance liquid chromatography-quadrupole-electrostatic field orbitrap high-resolution mass spectrometry(UPLC-Q-Exactive Orbitrap MS), and the data were processed by multivariate statistical analysis, the potential biomarkers were screened by variable importance in the projection(VIP) value≥1.0, fold change(FC)≥1.5 or ≤0.6 and t-test P<0.05, and pathway enrichment analysis of differential metabolites was performed in conjunction with Human Metabolome Database(HMDB) and Kyoto Encyclopedia of Genes and Genomes(KEGG). ResultAfter 14 weeks of administration, the average body mass gain of the model group was lower than that of the normal group, and the NTS high-dose group was close to that of the normal group. Compared with the normal group, the fecal character score of rats in the model group was significantly increased(P<0.05), and compared with the model group, the scores of the positive drug group and the NTS high-dose group were reduced, but the difference was not statistically significant. HE staining and scanning electron microscopy results showed that NTS could significantly improve ASA-induced small intestinal injury, compared with the normal group, the small bowel injury score of the model group was significantly increased(P<0.01), compared with the model group, the small bowel injury scores of the NTS low and high dose groups were significantly reduced(P<0.05, P<0.01). Serum metabolomics screened a total of 75 differential metabolites between the normal group and the model group, of which 55 were up-regulated and 20 were down-regulated, 76 differential metabolites between the model group and the NTS groups, of which 14 were up-regulated and 62 were down-regulated. NTS could modulate three differential metabolites(salicylic acid, 3-hydroxybenzoic acid and 4-hydroxybenzoic acid), which were involved in 3 metabolic pathways, namely, the bile secretion, the biosynthesis of folic acid, and the biosynthesis of phenylalanine, tyrosine and tryptophan. ConclusionNTS can prevent ASA-induced small bowel injury, and the underlying mechanism may be related to the regulation of bile secretion and amino acid metabolic pathways in rats.

Result Analysis
Print
Save
E-mail