1.Practice and evaluation of pharmacists’participation in long-term MTM models for stroke patients based on family doctor system
Lu SHI ; Chun LIU ; Lian TANG ; Jingjing LI ; Sudong XUE ; Yanxia YU ; Wenwen LI ; Keren YU ; Jianhui XUE ; Wen MA ; Hongzhi XUE
China Pharmacy 2025;36(9):1129-1134
OBJECTIVE To investigate the clinical efficacy of integrating pharmacists into family health teams (FHTs) for long-term medication therapeutical management (MTM) in stroke patients, and empirically evaluate the service model. METHODS A pharmacist team, jointly established by clinical and community pharmacists from the Affiliated Suzhou Hospital of Nanjing Medical University (hereinafter referred to as “our hospital”), developed a pharmacist-supported MTM model integrated into FHTs. Using a prospective randomized controlled design, 170 stroke patients discharged from our hospital (July 2022-December 2023) and enrolled in FHTs at Suzhou Runda Community Hospital were randomly divided into trial group (88 cases) and control group (82 cases) according to random number table. The control group received routine FHTs care (without pharmacist involvement in the team collaboration), while the trial group xhz8405@126.com received 12-month MTM services supported by pharmacists via an information platform. These services specifically included innovative interventions such as personalized medication regimen optimization based on the MTM framework, dynamic medication adherence management, medication safety monitoring, a home medication assessment system, and distinctive service offerings. Outcomes of the 2 grousp were compared before and after intervention, involving medication adherence (adherence rate, adherence score), compliance rates for stroke recurrence risk factors [blood pressure, low-density lipoprotein cholesterol (LDL-C)], and incidence of adverse drug reactions (ADR). RESULTS After 12 months, the trial group exhibited significantly higher medication adherence rates, improved adherence scores, higher compliance rates for blood pressure and LDL-C targets compared to the control group (P<0.05). The incidence of ADR in the trial group (4.55%) was significantly lower than that in the control group (8.11%), though the difference was not statistically significant (P> 0.05). CONCLUSIONS Pharmacist involvement in FHTs to deliver MTM services significantly enhances medication adherence and optimizes risk factor for stroke recurrence, offering practical evidence for advancing pharmaceutical care in chronic disease management under the family doctor system.
2.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
3.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
6.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
7.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
8.Potential mechanism of Yueju Pills in improving depressive symptoms of psychocardiac diseases based on metabolomics and network pharmacology.
Cheng-Yu DU ; Xue-Feng GUO ; Han-Wen ZHANG ; Jian LIANG ; Huan ZHANG ; Guo-Wei HUANG ; Ping NI ; Hai-Jun MA ; You YU ; Rui YU
China Journal of Chinese Materia Medica 2025;50(16):4564-4573
The therapeutic effects of Yueju Pills on depression and cardiovascular diseases have been widely recognized. Previous studies have shown that the drug can significantly improve depressive-like behaviors induced by chronic unpredictable mild stress(CUMS) combined with atherosclerosis(AS). Given the complex pathogenesis of psychocardiac diseases, this study integrated metabolomics and network pharmacology to systematically elucidate the mechanism of Yueju Pills in alleviating depressive symptoms in psychocardiac diseases. The results demonstrate that, after Yueju Pill intervention, the levels of 9 abnormal metabolites in the hippocampus restore to normal ranges, primarily involving key pathways or signaling pathways, including the cyclic adenosine monophosphate(cAMP), mammalian target of rapamycin(mTOR), glycine/serine/threonine metabolism, and aminoacyl-tRNA biosynthesis. In a high-fat diet-induced CUMS ApoE~(-/-) mouse model, Yueju Pills significantly increases adenosine monophosphate(AMP) levels and decreases L-alanine and D-glyceric acid levels in the hippocampus. In conclusion, Yueju Pills exert antidepressant effects by regulating multiple metabolic axes, including glycine/serine/threonine metabolism and the cAMP, mTOR signaling pathways. Network pharmacology predictions reveal that the treatment of CUMS combined with AS by its core active components may be realized through modulating pathways concerning neuroinflammation and synaptic plasticity, including serine/threonine-protein kinase 1(AKT1), mitogen-activated protein kinase 1(MAPK1), and prostaglandin-endoperoxide synthase 2(PTGS2). This study provides a theoretical reference for the clinical application of Yueju Pills in alleviating the depressive symptoms of psychocardiac diseases.
Animals
;
Network Pharmacology
;
Mice
;
Drugs, Chinese Herbal/administration & dosage*
;
Metabolomics
;
Male
;
Depression/genetics*
;
Humans
;
Hippocampus/drug effects*
;
Mice, Inbred C57BL
;
Signal Transduction/drug effects*
9.Postoperative Complications and 30-day Readmission in Patients Older than 80 Years with Chronic Kidney Disease after Hip Fracture.
Hua-Wen ZHANG ; Lu-Lu MA ; Xue-Rong YU
Chinese Medical Sciences Journal 2025;40(3):188-196
OBJECTIVES:
This study aimed to explore the impact of chronic kidney disease (CKD) on prognosis of patients older than 80 years after hip fracture.
METHODS:
This retrospective, observational, single-center study included patients older than 80 years who underwent hip fracture operations between Feburary 2013 to June 2021 at our hospital. Patients were divided into CKD and non-GKD groups based on the estimated glomerular filtration rate (eGFR) < 60 mL/(min·1.73m2)] or not. Outcomes were the incidence of in-hospital postoperative infectious and non-infectious complications, 30-day readmission, and in-hospital death. Logistic regression analysis was used to calculate the odds ratio (OR) of CKD on these outcomes.
RESULTS:
A total of 498 patients were included, 165 in the CKD group and 333 in the non-CKD group. Eighty-seven (52.7%) CKD patients experienced 140 episodes of postoperative complications. In comparison, 114 (34.2%) non-CKD patients had 158 episodes of postoperative complications. CKD patients were more likely to have postoperative complications than non-CKD patients (OR = 2.143, 95% CI: 1.465-3.134, P < 0.001). CKD increased the risk of cardiovascular complications (OR = 2.044, 95% CI: 1.245-3.356, P = 0.004), acute kidney injury (OR = 3.401, 95% CI: 1.905-6.072, P < 0.001), delirium (OR = 2.276, 95% CI: 1.140-4.543, P = 0.024), and gastrointestinal bleeding (OR = 4.151, 95% CI: 1.025-16.812, P = 0.031). The transfusion rate (OR = 2.457, 95% CI: 1.668-3.618, P < 0.001) and incidence of 30-day readmission (OR = 2.426, 95% CI:1.203-4.892, P = 0.011) in CKD patients were significantly higher than those in patients without CKD.
CONCLUSIONS
CKD is associated with poor postoperative outcomes in geriatric hip fracture patients. Special attention should be paid to patients with CKD.
Humans
;
Renal Insufficiency, Chronic/physiopathology*
;
Aged, 80 and over
;
Postoperative Complications/epidemiology*
;
Hip Fractures/complications*
;
Male
;
Female
;
Patient Readmission/statistics & numerical data*
;
Retrospective Studies
;
Glomerular Filtration Rate

Result Analysis
Print
Save
E-mail