1.Quality Evaluation of Naomaili Granules Based on Multi-component Content Determination and Fingerprint and Screening of Its Anti-neuroinflammatory Substance Basis
Ya WANG ; Yanan KANG ; Bo LIU ; Zimo WANG ; Xuan ZHANG ; Wei LAN ; Wen ZHANG ; Lu YANG ; Yi SUN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):170-178
ObjectiveTo establish an ultra-performance liquid fingerprint and multi-components determination method for Naomaili granules. To evaluate the quality of different batches by chemometrics, and the anti-neuroinflammatory effects of water extract and main components of Naomaili granules were tested in vitro. MethodsThe similarity and common peaks of 27 batches of Naomaili granules were evaluated by using Ultra performance liquid chromatography (UPLC) fingerprint detection. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technology was used to determine the content of the index components in Naomaili granules and to evaluate the quality of different batches of Naomaili granules by chemometrics. LPS-induced BV-2 cell inflammation model was used to investigate the anti-neuroinflammatory effects of the water extract and main components of Naomaili granules. ResultsThe similarity of fingerprints of 27 batches of samples was > 0.90. A total of 32 common peaks were calibrated, and 23 of them were identified and assigned. In 27 batches of Naomaili granules, the mass fractions of 14 components that were stachydrine hydrochloride, leonurine hydrochloride, calycosin-7-O-glucoside, calycosin,tanshinoneⅠ, cryptotanshinone, tanshinoneⅡA, ginsenoside Rb1, notoginsenoside R1, ginsenoside Rg1, paeoniflorin, albiflorin, lactiflorin, and salvianolic acid B were found to be 2.902-3.498, 0.233-0.343, 0.111-0.301, 0.07-0.152, 0.136-0.228, 0.195-0.390, 0.324-0.482, 1.056-1.435, 0.271-0.397, 1.318-1.649, 3.038-4.059, 2.263-3.455, 0.152-0.232, 2.931-3.991 mg∙g-1, respectively. Multivariate statistical analysis showed that paeoniflorin, ginsenoside Rg1, ginsenoside Rb1 and staphylline hydrochloride were quality difference markers to control the stability of the preparation. The results of bioactive experiment showed that the water extract of Naomaili granules and the eight main components with high content in the prescription had a dose-dependent inhibitory effect on the release of NO in the cell supernatant. Among them, salvianolic acid B and ginsenoside Rb1 had strong anti-inflammatory activity, with IC50 values of (36.11±0.15) mg∙L-1 and (27.24±0.54) mg∙L-1, respectively. ConclusionThe quality evaluation method of Naomaili granules established in this study was accurate and reproducible. Four quality difference markers were screened out, and eight key pharmacodynamic substances of Naomaili granules against neuroinflammation were screened out by in vitro cell experiments.
2.Rapid Identification of Different Parts of Nardostachys jatamansi Based on HS-SPME-GC-MS and Ultra-fast Gas Phase Electronic Nose
Tao WANG ; Xiaoqin ZHAO ; Yang WEN ; Momeimei QU ; Min LI ; Jing WEI ; Xiaoming BAO ; Ying LI ; Yuan LIU ; Xiao LUO ; Wenbing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):182-191
ObjectiveTo establish a model that can quickly identify the aroma components in different parts of Nardostachys jatamansi, so as to provide a quality control basis for the market circulation and clinical use of N. jatamansi. MethodsHeadspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS) combined with Smart aroma database and National Institute of Standards and Technology(NIST) database were used to characterize the aroma components in different parts of N. jatamansi, and the aroma components were quantified according to relative response factor(RRF) and three internal standards, and the markers of aroma differences in different parts of N. jatamansi were identified by orthogonal partial least squares-discriminant analysis(OPLS-DA) and cluster thermal analysis based on variable importance in the projection(VIP) value >1 and P<0.01. The odor data of different parts of N. jatamansi were collected by Heracles Ⅱ Neo ultra-fast gas phase electronic nose, and the correlation between compound types of aroma components collected by the ultra-fast gas phase electronic nose and the detection results of HS-SPME-GC-MS was investigated by drawing odor fingerprints and odor response radargrams. Chromatographic peak information with distinguishing ability≥0.700 and peak area≥200 was selected as sensor data, and the rapid identification model of different parts of N. jatamansi was established by principal component analysis(PCA), discriminant factor alysis(DFA), soft independent modeling of class analogies(SIMCA) and statistical quality control analysis(SQCA). ResultsThe HS-SPME-GC-MS results showed that there were 28 common components in the underground and aboveground parts of N. jatamansi, of which 22 could be quantified and 12 significantly different components were screened out. Among these 12 components, the contents of five components(ethyl isovalerate, 2-pentylfuran, benzyl alcohol, nonanal and glacial acetic acid,) in the aboveground part of N. jatamansi were significantly higher than those in the underground part(P<0.01), the contents of β-ionone, patchouli alcohol, α-caryophyllene, linalyl butyrate, valencene, 1,8-cineole and p-cymene in the underground part of N. jatamansi were significantly higher than those in the aboveground part(P<0.01). Heracles Ⅱ Neo electronic nose results showed that the PCA discrimination index of the underground and aboveground parts of N. jatamansi was 82, and the contribution rates of the principal component factors were 99.94% and 99.89% when 2 and 3 principal components were extracted, respectively. The contribution rate of the discriminant factor 1 of the DFA model constructed on the basis of PCA was 100%, the validation score of the SIMCA model for discrimination of the two parts was 99, and SQCA could clearly distinguish different parts of N. jatamansi. ConclusionHS-SPME-GC-MS can clarify the differential markers of underground and aboveground parts of N. jatamansi. The four analytical models provided by Heracles Ⅱ Neo electronic nose(PCA, DFA, SIMCA and SQCA) can realize the rapid identification of different parts of N. jatamansi. Combining the two results, it is speculated that terpenes and carboxylic acids may be the main factors contributing to the difference in aroma between the underground and aboveground parts of N. jatamansi.
3.Exploration of the Application of Fengfu (GV 16) Acupoint in BIAN Que Heart Book (《扁鹊心书》)
Yawei ZHAO ; Haoying LI ; Lintong WEN ; Hefei WANG ; Wei WANG ; Hongyu WU ; Shijiang SUN
Journal of Traditional Chinese Medicine 2025;66(1):98-101
By examining the records related to the Fengfu (GV 16) acupoint in BIAN Que Heart Book (《扁鹊心书》) compiled by the Song Dynasty physician DOU Cai, this study analyzed various aspects, including the differentiation of conditions treated with Fengfu (GV 16) acupoint, the theoretical foundation for selection of Fengfu (GV 16) acupoint, the application of needling manipulation, and the sensation of obtaining qi during acupuncture. The findings suggest that DOU Cai's approach to utilizing Fengfu (GV 16) acupoint differs from traditional methods, particularly emphasizing the effectiveness of achieving a sensation of heat and numbness. His unique techniques include transverse insertion at Fengfu (GV 16) acupoint and penetrated insertion to Fengchi (GB 20) and Yifeng (TE 17) acupoints. The records of Fengfu (GV 16) acupoint in BIAN Que Heart Book provide a valuable reference for its modern clinical application and further development.
4.Clinical Observation of Modified Zhigancao Tang in Treating Patients with Liver and Kidney Deficiency of Parkinson's Disease and Its Effect on Neuronal Signal-related Proteins
Yifo WEI ; Furong LYU ; Jia YAO ; Guonian LI ; Xianyi LUO ; Meng LUO ; Zhengzheng WEN ; Qiuqi LI ; Yihan LIU ; Linlin YANG ; Rui ZUO ; Wenxin DANG ; Fang MI ; Xiaoyan WANG ; Zhigang CHEN ; Fan LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):166-173
ObjectiveMicrotube associated protein-2 (MAP-2), alpha-tubulin (α-tubulin), and synaptophysin (SYP) are important proteins in neuronal signal communication. This paper observed the effects of modified Zhigancao Tang on the expression of serum α-Synuclein (α-Syn) and its oligomers, MAP-2, α-tubulin, and SYP of patients with liver and kidney deficiency of Parkinson's disease (PD), analyzed their correlation, and evaluated the therapeutic effect of modified Zhigancao Tang in patients with liver and kidney deficiency of PD based on α-Syn transmission pathway mediated by neuronal communication in vivo. MethodsA total of 60 patients with PD who met the inclusion criteria were randomly divided into a treatment group (30 cases) and a control group (30 cases). Both groups were treated on the basis of PD medicine, and the treatment group was treated with modified Zhigancao Tang. Both groups were treated for 12 weeks. The changes in UPDRS score, TCM syndrome score, and expression of serum α-Syn and its oligomers, MAP-2, α-tubulin, and SYP were observed before and after 12 weeks of treatment in each group. The correlation between the above-mentioned serum biological indexes and the levels of serum α-Syn and its oligomers was analyzed. ResultsAfter treatment, the TCM syndrome score, UPDRS score, UPDRS-Ⅱ score, and UPDRS-Ⅲ score of the treatment group were significantly decreased (P<0.05, P<0.01). The UPDRS score, UPDRS-Ⅱ score, and UPDRS-Ⅲ scores in the treatment group were significantly decreased compared with those in the control group after treatment (P<0.05). After treatment, the total effective rate of the control group was 63.3% (19/30), and that of the treatment group was 86.7% (26/30). The clinical effect of the observation group was better than the control group (Z=-2.03, P<0.05). The total effective rate of the observation group was better than that of the control group, and the difference was statistically significant (χ2=5.136, P<0.05). After treatment, the oligomer level of serum α-Syn and MAP-2 level in the treatment group were significantly decreased (P<0.05, P<0.01). The levels of serum α-Syn and its oligomers, as well as α-tubulin in the treatment group, were significantly decreased compared with those in the control group after treatment (P<0.05, P<0.01). Serum α-Syn was correlated with serum MAP-2 and α-Syn oligomer in patients with PD (P<0.05, P<0.01) but not correlated with serum SYP . Serum α-Syn oligomers of patients with PD were correlated with serum MAP-2 and α-tubulin (P<0.05, P<0.01) but not correlated with serum SYP level. Serum SYP of patients with PD was correlated with serum MAP-2 (P<0.05). ConclusionModified Zhigancao Tang has a therapeutic effect on patients with liver and kidney deficiency of PD by inhibiting the production of α-Syn oligomers and intervening α-Syn microtubule transport pathway in vivo.
5.Validation of retinoblastoma mouse model based on fluorescence imaging technology
Cailing DAI ; Wei YANG ; Limei WANG ; Jinlong DAI ; Yuying WEN ; Jianmin GUO
International Eye Science 2025;25(5):706-713
AIM: To provide references for the non-clinical evaluation of therapeutic targets or drugs for retinoblastoma, fluorescently labeled Y79 cells are injected into the vitreous body of BALB/c-nu mice to establish a retinoblastoma model, and the Melphalan treatment group is used as a positive control, which is verified by fluorescence imaging technology.METHODS: BALB/c-nu mice were intravitreous injected with GFP transfected Y79 cells(1.0×107 cell/mL, 3 μL)to establish the model. On the 27th day, the mice were randomly divided into model control group and different doses of Melphalan groups(1, 3, 10 μg/eye groups)according to the fluorescence value of in vivo imaging, with vitreous body single administrated and ocular symptoms observed daily. Slit-lamp examination was performed at 12, 20, 29, 35, 42, 48, 55, 76, and 83 d after modeling. In vivo imaging was performed on 12, 20, 27, 41, 48, 55, 62, 69, 76, and 83 d. At the last treatment, the eyeball, brain and cerebellum tissues were removed for histopathological examination.RESULTS: From the sixth day of modeling, cloud-like substances could be seen in the eyes of the animals, and the cloud-like substances occupied the whole eyeball of the mice in the model control group at the later stage, accompanied by irregular growth of blood vessels. After 27 days of modeling, the fluorescence value was detected in all the animals, and the fluorescence value continued to increase with the extension of modeling time. The fluorescence value of the tumor reached the peak after 69-83 days of modeling. Histological examination showed severe proliferation of intraocular tumor cells in the model control group, and tumor cells were observed in the brain of 1 model animal. In the 10 μg/eye Melphalan group, the fluorescence value was significantly decreased at 17 d after administration. The fluorescence value of the 3 μg/eye Melphalan group was significantly inhibited at 59 d after administration. No tumor cells were found in the brain tissue of animals in all Melphalan groups.CONCLUSION: After vitreous injection of Y79/pCDH-LUC-copGFP cells in BALB/c-nu mice, significant ocular lesions and proliferation of tumor cells were observed in the eyes. Meanwhile, Melphalan intervention significantly inhibited tumor cells in a dose-dependent manner, indicating that the mouse model of retinoblastoma was successfully constructed.
6.Exercise Regulates Structural Plasticity and Neurogenesis of Hippocampal Neurons and Improves Memory Impairment in High-fat Diet-induced Obese Mice
Meng-Si YAN ; Lin-Jie SHU ; Chao-Ge WANG ; Ran CHENG ; Lian-Wei MU ; Jing-Wen LIAO
Progress in Biochemistry and Biophysics 2025;52(4):995-1007
ObjectiveObesity has been identified as one of the most important risk factors for cognitive dysfunction. Physical exercise can ameliorate learning and memory deficits by reversing synaptic plasticity in the hippocampus and cortex in diseases such as Alzheimer’s disease. In this study, we aimed to determine whether 8 weeks of treadmill exercise could alleviate hippocampus-dependent memory impairment in high-fat diet-induced obese mice and investigate the potential mechanisms involved. MethodsA total of sixty 6-week-old male C57BL/6 mice, weighing between 20-30 g, were randomly assigned to 3 distinct groups, each consisting of 20 mice. The groups were designated as follows: control (CON), high-fat diet (HFD), and high-fat diet with exercise (HFD-Ex). Prior to the initiation of the treadmill exercise protocol, the HFD and HFD-Ex groups were fed a high-fat diet (60% fat by kcal) for 20 weeks. The mice in the HFD-Ex group underwent treadmill exercise at a speed of 8 m/min for the first 10 min, followed by 12 m/min for the subsequent 50 min, totally 60 min of exercise at a 0° slope, 5 d per week, for 8 weeks. We employed Y-maze and novel object recognition tests to assess hippocampus-dependent memory and utilized immunofluorescence, Western blot, Golgi staining, and ELISA to analyze axon length, dendritic complexity, number of spines, the expression of c-fos, doublecortin (DCX), postsynaptic density-95 (PSD95), synaptophysin (Syn), interleukin-1β (IL-1β), and the number of major histocompatibility complex II (MHC-II) positive cells. ResultsMice with HFD-induced obesity exhibit hippocampus-dependent memory impairment, and treadmill exercise can prevent memory decline in these mice. The expression of DCX was significantly decreased in the HFD-induced obese mice compared to the control group (P<0.001). Treadmill exercise increased the expression of c-fos (P<0.001) and DCX (P=0.001) in the hippocampus of the HFD-induced obese mice. The axon length (P<0.001), dendritic complexity (P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P<0.001) in the hippocampus were significantly decreased in the HFD-induced obese mice compared to the control group. Treadmill exercise increased the axon length (P=0.002), dendritic complexity(P<0.001), the number of spines (P<0.001) and the expression of PSD95 (P=0.001) of the hippocampus in the HFD-induced obese mice. Our study found a significant increase in MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of HFD-induced obese mice compared to the control group. Treadmill exercise was found to reduce the number of MHC-II positive cells (P<0.001) and the concentration of IL-1β (P<0.001) in the hippocampus of obese mice induced by a HFD. ConclusionTreadmill exercise led to enhanced neurogenesis and neuroplasticity by increasing the axon length, dendritic complexity, dendritic spine numbers, and the expression of PSD95 and DCX, decreasing the number of MHC-II positive cells and neuroinflammation in HFD-induced obese mice. Therefore, we speculate that exercise may serve as a non-pharmacologic method that protects against HFD-induced hippocampus-dependent memory dysfunction by enhancing neuroplasticity and neurogenesis in the hippocampus of obese mice.
7.Mechanism of Naoxintong Capsules Against Ischemia-reperfusion Injury in Rats via Inhibiting Pericyte Contraction Based on RHOA/ROCK1 Pathway
Yinlian WEN ; Jinfeng SHANG ; Bohong WANG ; Wanting WEI ; Xiaolu ZHANG ; Guijinfeng HUANG ; Xin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):159-167
ObjectiveTo investigate the mechanism of Naoxintong capsules on ischemia-reperfusion (I/R) injury in rats based on the changes of pericytes mediated by Ras homolog family member A (RHOA)/Rho-associated coiled-coil containing protein kinase 1 (ROCK1) pathway. MethodsNinety rats (15 rats for each group) were randomly divided into a sham operation group, a model group, a positive control group receiving Ginkgo biloba extract (21.6 mg·kg-1), and groups receiving Naoxintong capsules at low, medium, and high doses of 55, 110, and 220 mg·kg-1 (NXT-L, NXT-M, and NXT-H groups), respectively. Except for those in the sham operation group, all rats were subjected to transient middle cerebral artery occlusion (tMCAO) to establish the experiment model. Nerve function was assessed using a neurological function score. Cerebral blood flow was detected using a laser speckle contrast imager, and the cerebral infarction rate was calculated using 2,3,5-Triphenyl tetrazolium chloride (TTC) staining. Pathological changes were observed by hematoxylin-eosin (HE) staining and Nissl staining, while pericyte morphology was observed via transmission electron microscopy. Blood-brain barrier destruction was observed by Evans blue staining. Albumin and ischemia-modified albumin levels were measured using assay kits. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were used to detect the mRNA and protein expression levels of RHOA, ROCK1, platelet-derived growth factor receptor β (PDGFRB), α-smooth muscle actin (α-SMA), tight junction protein (ZO-1), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9). ResultsCompared with the sham operation group, the model group exhibited decreased neurological function scores, higher percentage reduction in blood flow, and increased cerebral infarction rates (P<0.01). Additionally, cortical neuronal nucleus shrinkage, edema, a decreased number of Nissl bodies, reduced pericyte area, elevated albumin content in the cortex (P<0.05), and increased ischemic modified albumin levels (P<0.01) were observed. The mRNA and protein expression levels of RHOA, ROCK1, PDGFRB, α-SMA, MMP-2, and MMP-9 were increased (P<0.01), while those of ZO-1 were decreased. Compared with the model group, all treatment groups showed improved neurological function scores, lower percentage reduction in blood flow, reduced cerebral infarction rates (P<0.01), alleviated cortical histological changes, increased number of Nissl bodies, expanded pericyte area, decreased albumin content in the cortex, and reduced ischemia-modified albumin levels (P<0.01). The mRNA and protein expression levels of RHOA, ROCK1, PDGFRB, α-SMA, MMP-2, and MMP-9 were decreased (P<0.01), while those of ZO-1 were increased. Among the treatment groups, the NXT-M group showed the most pronounced improvement in cerebral I/R injury. ConclusionNaoxintong capsules can restore cerebral blood supply, reduce microcirculation disturbance, and protect blood-brain barrier in rats with I/R injury. Its mechanism of action may be related to the inhibition of the RHOA/ROCK1 signaling pathway and reduced pericyte contraction.
8.Mechanism of Naoxintong Capsules Against Ischemia-reperfusion Injury in Rats via Inhibiting Pericyte Contraction Based on RHOA/ROCK1 Pathway
Yinlian WEN ; Jinfeng SHANG ; Bohong WANG ; Wanting WEI ; Xiaolu ZHANG ; Guijinfeng HUANG ; Xin LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(12):159-167
ObjectiveTo investigate the mechanism of Naoxintong capsules on ischemia-reperfusion (I/R) injury in rats based on the changes of pericytes mediated by Ras homolog family member A (RHOA)/Rho-associated coiled-coil containing protein kinase 1 (ROCK1) pathway. MethodsNinety rats (15 rats for each group) were randomly divided into a sham operation group, a model group, a positive control group receiving Ginkgo biloba extract (21.6 mg·kg-1), and groups receiving Naoxintong capsules at low, medium, and high doses of 55, 110, and 220 mg·kg-1 (NXT-L, NXT-M, and NXT-H groups), respectively. Except for those in the sham operation group, all rats were subjected to transient middle cerebral artery occlusion (tMCAO) to establish the experiment model. Nerve function was assessed using a neurological function score. Cerebral blood flow was detected using a laser speckle contrast imager, and the cerebral infarction rate was calculated using 2,3,5-Triphenyl tetrazolium chloride (TTC) staining. Pathological changes were observed by hematoxylin-eosin (HE) staining and Nissl staining, while pericyte morphology was observed via transmission electron microscopy. Blood-brain barrier destruction was observed by Evans blue staining. Albumin and ischemia-modified albumin levels were measured using assay kits. Real-time fluorescence quantitative polymerase chain reaction (Real-time PCR) and Western blot were used to detect the mRNA and protein expression levels of RHOA, ROCK1, platelet-derived growth factor receptor β (PDGFRB), α-smooth muscle actin (α-SMA), tight junction protein (ZO-1), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9). ResultsCompared with the sham operation group, the model group exhibited decreased neurological function scores, higher percentage reduction in blood flow, and increased cerebral infarction rates (P<0.01). Additionally, cortical neuronal nucleus shrinkage, edema, a decreased number of Nissl bodies, reduced pericyte area, elevated albumin content in the cortex (P<0.05), and increased ischemic modified albumin levels (P<0.01) were observed. The mRNA and protein expression levels of RHOA, ROCK1, PDGFRB, α-SMA, MMP-2, and MMP-9 were increased (P<0.01), while those of ZO-1 were decreased. Compared with the model group, all treatment groups showed improved neurological function scores, lower percentage reduction in blood flow, reduced cerebral infarction rates (P<0.01), alleviated cortical histological changes, increased number of Nissl bodies, expanded pericyte area, decreased albumin content in the cortex, and reduced ischemia-modified albumin levels (P<0.01). The mRNA and protein expression levels of RHOA, ROCK1, PDGFRB, α-SMA, MMP-2, and MMP-9 were decreased (P<0.01), while those of ZO-1 were increased. Among the treatment groups, the NXT-M group showed the most pronounced improvement in cerebral I/R injury. ConclusionNaoxintong capsules can restore cerebral blood supply, reduce microcirculation disturbance, and protect blood-brain barrier in rats with I/R injury. Its mechanism of action may be related to the inhibition of the RHOA/ROCK1 signaling pathway and reduced pericyte contraction.
9.Ultrasound-guided attenuation parameter for identifying metabolic dysfunction-associated steatotic liver disease: a prospective study
Yun-Lin HUANG ; Chao SUN ; Ying WANG ; Juan CHENG ; Shi-Wen WANG ; Li WEI ; Xiu-Yun LU ; Rui CHENG ; Ming WANG ; Jian-Gao FAN ; Yi DONG
Ultrasonography 2025;44(2):134-144
Purpose:
This study assessed the performance of the ultrasound-guided attenuation parameter (UGAP) in diagnosing and grading hepatic steatosis in patients with metabolic dysfunctionassociated steatotic liver disease (MASLD). Magnetic resonance imaging proton density fat fraction (MRI-PDFF) served as the reference standard.
Methods:
Patients with hepatic steatosis were enrolled in this prospective study and underwent UGAP measurements. MRI-PDFF values of ≥5%, ≥15%, and ≥25% were used as references for the diagnosis of steatosis grades ≥S1, ≥S2, and S3, respectively. Spearman correlation coefficients and area under the receiver operating characteristic curves (AUCs) were calculated.
Results:
Between July 2023 and June 2024, the study included 88 patients (median age, 40 years; interquartile range [IQR], 36 to 46 years), of whom 54.5% (48/88) were men and 45.5% (40/88) were women. Steatosis grades exhibited the following distribution: 22.7% (20/88) had S0, 50.0% (44/88) had S1, 21.6% (19/88) had S2, and 5.7% (5/88) had S3. The success rate for UGAP measurements was 100%. The median UGAP value was 0.74 dB/cm/MHz (IQR, 0.65 to 0.82 dB/ cm/MHz), and UGAP values were positively correlated with MRI-PDFF (r=0.77, P<0.001). The AUCs of UGAP for the diagnoses of ≥S1, ≥S2, and S3 steatosis were 0.91, 0.90, and 0.88, respectively. In the subgroup analysis, 98.4% (60/61) of patients had valid controlled attenuation parameter (CAP) values. UGAP measurements were positively correlated with CAP values (r=0.65, P<0.001).
Conclusion
Using MRI-PDFF as the reference standard, UGAP demonstrates good diagnostic performance in the detection and grading of hepatic steatosis in patients with MASLD.
10.Endovascular Treatment for Acute Posterior Circulation Tandem Lesions: Insights From the BASILAR and PERSIST Registries
Wei LI ; Mohamed F. DOHEIM ; Zhongming QIU ; Tan WANG ; Zhibin CHEN ; Wenjie ZI ; Qingwu YANG ; Haitao GUAN ; Hongyu QIAO ; Wenhua LIU ; Wei HU ; Xinfeng LIU ; Jinbo HUANG ; Zhongkui HAN ; Zhonglun CHEN ; Zhenqiang ZHAO ; Wen SUN ; Raul G. NOGUEIRA
Journal of Stroke 2025;27(1):75-84
Background:
and Purpose Limited evidence exists on the effectiveness of endovascular treatment (EVT) for acute posterior circulation tandem lesion (PCTL). This study aimed to explore the role of extracranial vertebral artery (VA) stenting in patients with PCTL stroke undergoing EVT.
Methods:
Individual patient data were pooled from the BASILAR (EVT for Acute Basilar Artery Occlusion Study) and PERSIST (Posterior Circulation Ischemic Stroke) registries. Patients with PCTLs who underwent EVT were included in the present cohort and divided into the stenting and nonstenting groups based on the placement of extracranial VA stents. The primary efficacy outcome was the modified Rankin Scale (mRS) scores at 90 days and 1 year. Safety outcomes included 24-hour symptomatic intracranial hemorrhage (sICH) and all-cause mortality at 90 days and 1 year post-surgery.
Results:
A combined dataset of 1,320 patients with posterior circulation artery occlusion, including 263 (19.9%) with tandem lesions, of whom 217 (median age, 65 years; 82.9% male) met the inclusion criteria for the analysis. The stenting group had 84 (38.7%) patients, while the non-stenting group had 133 (61.3%). After adjustment for the potential confounders, extracranial VA stenting was associated with favorable shifts in mRS scores at both 90 days (adjusted common odds ratio [OR], 2.30; 95% confidence interval [CI], 1.23–4.28; P<0.01) and 1 year (adjusted OR [aOR], 2.04; 95% CI [1.05–3.97]; P=0.04), along with lower rate of mortality at both 90 days (aOR, 0.45; 95% CI [0.21–0.93]; P=0.01) and 1 year (aOR, 0.36; 95% CI [0.16–0.79]; P=0.01), with no significant difference in sICH incidence (aOR, 0.35; 95% CI [0.06–1.98]; P=0.24).
Conclusion
Extracranial VA stenting during EVT may improve functional outcomes and reduce mortality in patients with PCTL strokes.

Result Analysis
Print
Save
E-mail