1.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Investigation on the mechanisms of Colquhounia Root Tablets in reversing vascular endothelial cell dysfunction of rheumatoid arthritis via modulating NOD2/SMAD3/VEGFA signaling axis
Bing-bing CAI ; Ya-wen CHEN ; Tao LI ; Yuan ZENG ; Yan-qiong ZHANG ; Na LIN ; Xia MAO ; Ya LIN
Acta Pharmaceutica Sinica 2025;60(2):397-407
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation, joint destruction, and functional impairment. Angiogenesis plays a key role in the pathological progression of RA with dysfunction of endothelial cells to promote synovial inflammation, sustain pannus formation, subsequently leading to joint damage. Colquhounia Root Tablets (CRT), a Chinese patent drug, has shown a satisfying clinical efficacy in treating RA, while the underlying mechanism by which CRT inhibits RA-associated angiogenesis remains unclear. In this study, we applied a research approach combining transcriptomic data analysis, bio-network mapping, and
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
7.Network Pharmacology and Experimental Verification Unraveled The Mechanism of Pachymic Acid in The Treatment of Neuroblastoma
Hang LIU ; Yu-Xin ZHU ; Si-Lin GUO ; Xin-Yun PAN ; Yuan-Jie XIE ; Si-Cong LIAO ; Xin-Wen DAI ; Ping SHEN ; Yu-Bo XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2376-2392
ObjectiveTraditional Chinese medicine (TCM) constitutes a valuable cultural heritage and an important source of antitumor compounds. Poria (Poria cocos (Schw.) Wolf), the dried sclerotium of a polyporaceae fungus, was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia. Traditionally recognized for its diuretic, spleen-tonifying, and sedative properties, modern pharmacological studies confirm that Poria exhibits antioxidant, anti-inflammatory, antibacterial, and antitumor activities. Pachymic acid (PA; a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid), isolated from Poria, is a principal bioactive constituent. Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms, though these remain incompletely characterized. Neuroblastoma (NB), a highly malignant pediatric extracranial solid tumor accounting for 15% of childhood cancer deaths, urgently requires safer therapeutics due to the limitations of current treatments. Although PA shows multi-mechanistic antitumor potential, its efficacy against NB remains uncharacterized. This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking, dynamic simulations, and in vitro assays, aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays. MethodsThis study employed network pharmacology to identify potential targets of PA in NB, followed by validation using molecular docking, molecular dynamics (MD) simulations, MM/PBSA free energy analysis, RT-qPCR and Western blot experiments. Network pharmacology analysis included target screening via TCMSP, GeneCards, DisGeNET, SwissTargetPrediction, SuperPred, and PharmMapper. Subsequently, potential targets were predicted by intersecting the results from these databases via Venn analysis. Following target prediction, topological analysis was performed to identify key targets using Cytoscape software. Molecular docking was conducted using AutoDock Vina, with the binding pocket defined based on crystal structures. MD simulations were performed for 100 ns using GROMACS, and RMSD, RMSF, SASA, and hydrogen bonding dynamics were analyzed. MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex. In vitro validation included RT-qPCR and Western blot, with GAPDH used as an internal control. ResultsThe CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability. GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress, vesicle lumen, and protein tyrosine kinase activity. KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT, MAPK, and Ras signaling pathways. Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1, EGFR, SRC, and HSP90AA1. RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1, EGFR, and SRC while increasing the HSP90AA1 mRNA and protein levels. ConclusionIt was suggested that PA may exert its anti-NB effects by inhibiting AKT1, EGFR, and SRC expression, potentially modulating the PI3K/AKT signaling pathway. These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB.
8.Prevalence and risk evaluation of cardiovascular disease in the newly diagnosed prostate cancer population in China: A nationwide, multi-center, population-based cross-sectional study
Weiyu ZHANG ; Huixin LIU ; Ming LIU ; Shi YING ; Renbin YUAN ; Hao ZENG ; Zhenting ZHANG ; Sujun HAN ; Zhannan SI ; Bin HU ; Simeng WEN ; Pengcheng XU ; Weimin YU ; Hui CHEN ; Liang WANG ; Zhitao LIN ; Tao DAI ; Yunzhi LIN ; Tao XU
Chinese Medical Journal 2024;137(11):1324-1331
Background::Cardiovascular disease (CVD) has emerged as the leading cause of death from prostate cancer (PCa) in recent decades, bringing a great disease burden worldwide. Men with preexisting CVD have an increased risk for major adverse cardiovascular events when treated with androgen deprivation therapy (ADT). The present study aimed to explore the prevalence and risk evaluation of CVD among people with newly diagnosed PCa in China.Methods::Clinical data of newly diagnosed PCa patients were retrospectively collected from 34 centers in China from 2010 to 2022 through convenience sampling. CVD was defined as myocardial infarction, arrhythmia, heart failure, stroke, ischemic heart disease, and others. CVD risk was estimated by calculating Framingham risk scores (FRS). Patients were accordingly divided into low-, medium-, and high-risk groups. χ2 or Fisher’s exact test was used for comparison of categorical variables. Results::A total of 4253 patients were enrolled in the present study. A total of 27.0% (1147/4253) of patients had comorbid PCa and CVD, and 7.2% (307/4253) had two or more CVDs. The enrolled population was distributed in six regions of China, and approximately 71.0% (3019/4253) of patients lived in urban areas. With imaging and pathological evaluation, most PCa patients were diagnosed at an advanced stage, with 20.5% (871/4253) locally progressing and 20.5% (871/4253) showing metastasis. Most of them initiated prostatectomy (46.6%, 1983/4253) or regimens involving ADT therapy (45.7%, 1944/4253) for prostate cancer. In the present PCa cohort, 43.1% (1832/4253) of patients had hypertension, and half of them had poorly controlled blood pressure. With FRS stratification, as expected, a higher risk of CVD was related to aging and metabolic disturbance. However, we also found that patients with treatment involving ADT presented an originally higher risk of CVD than those without ADT. This was in accordance with clinical practice, i.e., aged patients or patients at advanced oncological stages were inclined to accept systematic integrative therapy instead of surgery. Among patients who underwent medical castration, only 4.0% (45/1118) received gonadotropin releasing hormone antagonists, in stark contrast to the grim situation of CVD prevalence and risk.Conclusions::PCa patients in China are diagnosed at an advanced stage. A heavy CVD burden was present at the initiation of treatment. Patients who accepted ADT-related therapy showed an original higher risk of CVD, but the awareness of cardiovascular protection was far from sufficient.
9.Clinical analysis of different anastomotic methods in superficial branch perforator flap transplantation of superficial circumflex iliac artery
Zhi-Guo DU ; Hui-Dong ZHANG ; Le-Le GUO ; Jing-Chao GENG ; Ming-Bin DING ; Wen-Qiang HUANG ; Yuan-Lin ZHANG
Journal of Regional Anatomy and Operative Surgery 2024;33(6):528-531
Objective To analyze the effects of different anastomotic methods on flap survival rate and wound healing factors of patients with transplantation of superficial branch perforator flap of superficial circumflex iliac artery(SCIA).Methods A total of 100 patients with skin defects of limbs admitted to our hospital from January 2019 to August 2022 were selected and divided into end-to-end anastomosis group(56 cases)and end-to-side anastomosis group(44 cases)according to different anastomosis methods.In the end-to-end anastomosis group,the end of the flap artery was anastomosed with the end of the aortic branch in the affected area.In the end-to-side anastomosis group,the end of recipient flap artery was anastomosed with the side of aorta.Patients in both groups were followed up for 6 to 12 months,the arterial caliber,lateral caliber and anastomosis time were compared between the two groups.The survival of the flap,the occurrence of venous crisis,the shape and function of the flap and donor area were observed.Results There was no statistically significant difference in the arterial caliber or lateral caliber of patients between the two groups(P>0.05).The anastomosis time of patients in the end-to-end anastomosis group was significantly shorter than that in the end-to-side anastomosis group(P<0.05).All 56 cases in the end-to-end anastomosis group survived.In the end-to-side anastomosis group,venous crisis occurred in 4 cases,with venous thrombosis,2 cases survived after re-anastomosis,2 cases were changed to abdominal pedicled flap when venous crisis occurred again,the appearance and function of the flap and donor area were satisfactory 6 months to 1 year after surgery(P<0.05).There was no significant difference in color,thickness,vascular distribution or flexibility of donor area of patients between the two groups(P>0.05).There was no significant difference in pain,appearance,vitality and recreation of recipient area of patients between the two groups(P>0.05).Conclusion The application of different arterial anastomosis methods in the transplantation of superficial branch perforator flap of SCIA for the treatment of skin and soft tissue defects of limbs is safe and reliable,the postoperative survival of the flap is good,the healing is not affected by the anastomosis method,and the appearance of the affected area is satisfactory,which is worthy of clinical promotion.
10.Investigation of tick species and potential pathogenic ricks in certain areas of Wuwei City,Gansu Province
Rui-Shan LI ; Zhen HE ; Xiang YUAN ; Shi-Wei SUN ; Yi-Wen LIU ; Wen-Kai ZHANG ; Lin ZHANG ; Yu-Hua WANG ; Zhen-Hua LU ; Zhao-Hua JI ; Zhong-Jun SHAO
Chinese Journal of Zoonoses 2024;40(4):328-333
To understand the distribution of ticks in the Wuwei Region,enrich tick species data,and provide a basis for the prevention of tick-borne diseases,tick were collected using flagging and tick-picking methods during the highest activity period from April to September in 2021 and 2022 in the mountainous areas of Wuwei City.The ticks were identified based on morpho-logical and molecular biological characteristics,and characteristic sequences were obtained.A systematic evolutionary tree was constructed using the neighbor-joining method in MEGA 11.0 software.In total,7 342 ticks collected in Wuwei,which be-longed to 5 species from 4 genera with in the Ixodidae family,which included Dermacentor nuttalli,Hyalomma asiaticum,Ixodes canisuga,Haemaphysalis longicornis and Haema-physalis danieli.Ticks of the same species clustered together into the same branch of an evolutionary tree.In the Wuwei Re-gion,five common tick species are found across various habi-tats,with each habitat featuring different distributions of tick species and populations.The Dermacentor nuttalli is the dom-inant tick species in this area.

Result Analysis
Print
Save
E-mail