1.Trend of periodontal disease burden among Chinese women of reproductive age from 1990 to 2021
WEN Ping ; ZHANG Feng ; XU Weijie ; YANG Xiuqiao ; LIN Hong ; LI Xiaotian
Journal of Prevention and Treatment for Stomatological Diseases 2025;33(3):221-229
Objective:
To analyze the status and trends of the disease burden of periodontal disease among women of reproductive age (15-49 years) in China from 1990 to 2021, and to provide a reference for the development of periodontal disease prevention and control strategies for women of reproductive age.
Methods:
Using the global burden of disease (GBD) data from 1990 to 2021, this study investigated the periodontal disease burden among women of reproductive age, including prevalence, incidence, disability-adjusted life years (DALYs), DALY rates, and their corresponding standardized indicators. Joinpoint 5.2.0.0 software was used for time trend analysis of DALYs, age-specific DALY rates, and annual average percentage change (AAPC) values. A log-linear regression model was used to test trends for DALYs and DALY rates.
Results:
Compared with 1990, the prevalence and incidence of periodontal disease among Chinese women in 2021 increased by 45.67% (per 100,000 people) and 29.29% (per 100,000 people), respectively. The distribution of periodontal disease among women (15-49 years) showed a continuous and rapid upward trend, with the growth rate increasing rapidly with age. The number of cases increased the fastest in the 45-49 age group, and the prevalence increased the fastest in the 35-44 age group. The incidence of periodontal disease continued to rise with age, with the fastest increase in the 35-44 age group among women of reproductive age. The Joinpoint regression model results showed that periodontal disease led to an expanding trend in the disease burden among women of reproductive age in China, with an AAPC of DALYs = 1.20% and an AAPC of DALY rate = 1.25% (P<0.001).
Conclusion
The periodontal disease burden among Chinese women aged 15-49 years showed a gradually increasing trend from 1990 to 2021.
2.Investigation on the mechanisms of Colquhounia Root Tablets in reversing vascular endothelial cell dysfunction of rheumatoid arthritis via modulating NOD2/SMAD3/VEGFA signaling axis
Bing-bing CAI ; Ya-wen CHEN ; Tao LI ; Yuan ZENG ; Yan-qiong ZHANG ; Na LIN ; Xia MAO ; Ya LIN
Acta Pharmaceutica Sinica 2025;60(2):397-407
Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by synovial inflammation, joint destruction, and functional impairment. Angiogenesis plays a key role in the pathological progression of RA with dysfunction of endothelial cells to promote synovial inflammation, sustain pannus formation, subsequently leading to joint damage. Colquhounia Root Tablets (CRT), a Chinese patent drug, has shown a satisfying clinical efficacy in treating RA, while the underlying mechanism by which CRT inhibits RA-associated angiogenesis remains unclear. In this study, we applied a research approach combining transcriptomic data analysis, bio-network mapping, and
3.Design, synthesis and anti-Alzheimer's disease activity evaluation of cinnamyl triazole compounds
Wen-ju LEI ; Zhong-di CAI ; Lin-jie TAN ; Mi-min LIU ; Li ZENG ; Ting SUN ; Hong YI ; Rui LIU ; Zhuo-rong LI
Acta Pharmaceutica Sinica 2025;60(1):150-163
19 cinnamamide/ester-triazole compounds were designed, synthesized and evaluated for their anti-Alzheimer's disease (AD) activity. Among them, compound
4.An alkyne and two phenylpropanoid derivants from Carthamus tinctorius L.
Lin-qing QIAO ; Ge-ge XIA ; Ying-jie LI ; Wen-xuan ZHAO ; Yan-zhi WANG
Acta Pharmaceutica Sinica 2025;60(1):185-190
The chemical constituents from the
5.Research Progress on Qingwen Baidu Decoction and Its Active Ingredients in Prevention of Lung Injury
Xiaojie LIN ; Xianan WEN ; Qiaolin ZENG ; Li WANG ; Yuanru ZHENG ; Jie ZHAO
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(9):315-322
Acute lung injury (ALI) is a common and highly lethal clinical syndrome characterized by acute progressive respiratory failure. Currently, the treatment of ALI primarily involves respiratory support therapy and symptomatic pharmacotherapy, yet there is still a lack of specific and effective pharmacological treatments. Qingwen Baidu decoction is a traditional Chinese medicine formula that has the effects of clearing heat, removing toxin, cooling blood, and purging fire. Its pharmacological effects include anti-inflammatory, antipyretic, antibacterial, antiviral, sedative, and so on. The flavonoids, phenols, terpenes, and other components contained in this formula have strong pharmacological activity, which can regulate the inflammatory response caused and oxidative stress in ALI and maintain the integrity of alveolar-capillary barrier (ACB) by anti-apoptosis, anti-pathogen infection, and anti-pulmonary fibrosis, thereby improving the pathological changes of lung tissue. Among them, flavonoids have been reported more, and their mechanism of action is complex and diverse. For example, quercetin, luteolin, and baicalin act on multiple important targets, such as signal transducer and activator of transcription 3 (STAT3), mitogen-activated protein kinase 3 (MAPK3), etc. and participate in the regulation of Toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88)/nuclear factor kappa B (NF-κB), nuclear factor erythroid 2-related factor 2(Nrf2)/Kelch-like ECH-associated protein 1 (Keap1), and silent information regulator 1 (SIRT1)/forkhead box protein O1 (FoxO1) signaling pathways, thereby intervening in pathological events such as inflammation, oxidative stress, cell apoptosis, and fibrosis. This paper aims to review the research progress on Qingwen Baidu decoction and its active ingredients in the prevention and treatment of lung injury in the expectation of providing reference for its subsequent pharmacological mechanism research and theoretical support for its clinical application and drug development in the treatment of ALI.
6.Mechanism of Ethoxysanguinarine in Regulating IRE1/RIDD Signaling Pathway to Inhibit Endoplasmic Reticulum Stress and Alleviate Cardiomyocyte Apoptosis
Zucheng SHANG ; Hongzheng LI ; Mengfan LI ; Wen SUN ; Guosheng LIN ; Aling SHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):141-148
ObjectiveTo investigate the effects of ethoxysanguinarine (ETH) on angiotensin Ⅱ (Ang Ⅱ)-mediated cardiomyocyte apoptosis and its regulatory effects of inositol-requiring enzyme 1 (IRE1)/regulated IRE1-dependent decay (RIDD) signaling pathway and endoplasmic reticulum stress. MethodsWestern blot was used to detect the establishment of the H9c2 model via Ang Ⅱ stimulation, which was identified as a cardiomyocyte apoptosis model. Subsequently, the inhibitory effect of ETH on cell proliferation was assessed using the cell counting Kit-8 (CCK-8) to determine the optimal effective dose of ETH. H9c2 cardiomyocytes were divided into a blank group, a model group (Ang Ⅱ, 1 mmol·L-1), and low-, medium-, and high-dose ETH groups (1.25, 2.5, and 5 mmol·L-1). Morphological changes in cardiomyocytes induced by Ang Ⅱ were detected using phalloidin staining. Cardiomyocyte apoptosis was assessed using terminal deoxynucleotidyl transferase dUTP nick and labeling (TUNEL) staining. The apoptosis cycle was detected by Annexin V/PI flow cytometry. Western blot was used to detect the expression levels of apoptosis-related proteins, endoplasmic reticulum stress, and IRE1/RIDD pathway-related proteins. ResultsWestern blot results showed that 1 mmol/mL Ang Ⅱ stimulation significantly increased the protein expression levels of Bip, p-IRE1, and Bid in H9c2 cells (P<0.05, P<0.01), indicating the induction of endoplasmic reticulum stress, activation of the IRE1/RIDD signaling pathway, and initiation of the apoptosis process. Compared with the blank group, the model group showed a significant increase in the surface area of H9c2 cells and the apoptosis rate of cardiomyocytes, as well as in both early and late apoptosis rates (P<0.01). The expression levels of Bid, Bax, cleaved-Caspase-3, and cleaved-Caspase-8 proteins were significantly increased, while the expression level of Bcl-2 protein was significantly decreased (P<0.01). The expression levels of Bip, p-IRE1, and p-RIDD proteins were significantly increased (P<0.05, P<0.01). Compared with those in the model group, the surface area of cardiomyocytes and the apoptosis rate of cardiomyocytes in all ETH groups were significantly decreased after drug intervention. Both early and late apoptosis rates were significantly decreased. The expression level of cleaved-Caspase-8 was significantly decreased in the low-dose ETH group (P<0.05). The expression levels of Bid, Bax, and cleaved-Caspase-8 were significantly decreased in the medium-dose ETH group (P<0.05, P<0.01). The high-dose ETH group significantly reduced the expression levels of Bid, Bax, cleaved-Caspase-3, and cleaved-Caspase-8 (P<0.05, P<0.01) and significantly increased the expression level of Bcl-2 (P<0.05). The level of p-IRE1 protein in the medium-dose ETH group was significantly decreased (P<0.01). The expression levels of Bip, p-IRE1, and p-RIDD proteins in the high-dose ETH group were significantly decreased (P<0.05, P<0.01). ConclusionETH can alleviate Ang Ⅱ-mediated cardiomyocyte apoptosis by inhibiting the IRE1/RIDD signaling pathway and further alleviate the cardiac injury caused by hypertension.
7.Mechanism of Ethoxysanguinarine in Regulating IRE1/RIDD Signaling Pathway to Inhibit Endoplasmic Reticulum Stress and Alleviate Cardiomyocyte Apoptosis
Zucheng SHANG ; Hongzheng LI ; Mengfan LI ; Wen SUN ; Guosheng LIN ; Aling SHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):141-148
ObjectiveTo investigate the effects of ethoxysanguinarine (ETH) on angiotensin Ⅱ (Ang Ⅱ)-mediated cardiomyocyte apoptosis and its regulatory effects of inositol-requiring enzyme 1 (IRE1)/regulated IRE1-dependent decay (RIDD) signaling pathway and endoplasmic reticulum stress. MethodsWestern blot was used to detect the establishment of the H9c2 model via Ang Ⅱ stimulation, which was identified as a cardiomyocyte apoptosis model. Subsequently, the inhibitory effect of ETH on cell proliferation was assessed using the cell counting Kit-8 (CCK-8) to determine the optimal effective dose of ETH. H9c2 cardiomyocytes were divided into a blank group, a model group (Ang Ⅱ, 1 mmol·L-1), and low-, medium-, and high-dose ETH groups (1.25, 2.5, and 5 mmol·L-1). Morphological changes in cardiomyocytes induced by Ang Ⅱ were detected using phalloidin staining. Cardiomyocyte apoptosis was assessed using terminal deoxynucleotidyl transferase dUTP nick and labeling (TUNEL) staining. The apoptosis cycle was detected by Annexin V/PI flow cytometry. Western blot was used to detect the expression levels of apoptosis-related proteins, endoplasmic reticulum stress, and IRE1/RIDD pathway-related proteins. ResultsWestern blot results showed that 1 mmol/mL Ang Ⅱ stimulation significantly increased the protein expression levels of Bip, p-IRE1, and Bid in H9c2 cells (P<0.05, P<0.01), indicating the induction of endoplasmic reticulum stress, activation of the IRE1/RIDD signaling pathway, and initiation of the apoptosis process. Compared with the blank group, the model group showed a significant increase in the surface area of H9c2 cells and the apoptosis rate of cardiomyocytes, as well as in both early and late apoptosis rates (P<0.01). The expression levels of Bid, Bax, cleaved-Caspase-3, and cleaved-Caspase-8 proteins were significantly increased, while the expression level of Bcl-2 protein was significantly decreased (P<0.01). The expression levels of Bip, p-IRE1, and p-RIDD proteins were significantly increased (P<0.05, P<0.01). Compared with those in the model group, the surface area of cardiomyocytes and the apoptosis rate of cardiomyocytes in all ETH groups were significantly decreased after drug intervention. Both early and late apoptosis rates were significantly decreased. The expression level of cleaved-Caspase-8 was significantly decreased in the low-dose ETH group (P<0.05). The expression levels of Bid, Bax, and cleaved-Caspase-8 were significantly decreased in the medium-dose ETH group (P<0.05, P<0.01). The high-dose ETH group significantly reduced the expression levels of Bid, Bax, cleaved-Caspase-3, and cleaved-Caspase-8 (P<0.05, P<0.01) and significantly increased the expression level of Bcl-2 (P<0.05). The level of p-IRE1 protein in the medium-dose ETH group was significantly decreased (P<0.01). The expression levels of Bip, p-IRE1, and p-RIDD proteins in the high-dose ETH group were significantly decreased (P<0.05, P<0.01). ConclusionETH can alleviate Ang Ⅱ-mediated cardiomyocyte apoptosis by inhibiting the IRE1/RIDD signaling pathway and further alleviate the cardiac injury caused by hypertension.
8.Effects of understory environmental factors on understory planting of medicinal plants.
Ding-Mei WEN ; Hong-Biao ZHANG ; Feng-Yuan QIN ; Chao-Qun XU ; Dou-Dou LI ; Bao-Lin GUO
China Journal of Chinese Materia Medica 2025;50(5):1164-1171
Understory planting of medicinal plants is a new planting mode that connects Chinese herbal medicine(CHM) with forest resources.The complex and variable understory environmental factors will inevitably affect the yield and quality of understory CHM.This research summarized the research progress on understory planting of medicinal plants based on forest types and environmental factors within the forest from the perspectives of understory light, air temperature and humidity, soil characteristics, and the interaction between crops within the forest.The results showed that the complex and variable light, temperature and humidity, and soil factors(such as fertility, acidity and alkalinity, and microorganisms) under the forest could affect the yield and quality of medicinal plants to varying degrees through physiological activities such as photosynthesis and respiration, resulting in a significant increase or decrease in yield and quality compared to open field cultivation.In addition, the competition or mutual benefit between different crops within the forest could lead to differences in the yield and quality of understory medicinal plants compared to open field cultivation.A reasonable combination of planting could achieve resource sharing and complementary advantages.Therefore, conducting systematic research on the effects of understory environmental factors on the yield and content of medicinal plants with different growth and development characteristics can provide theoretical guidance and technical references for formulating comprehensive strategies for understory planting of medicinal plants, such as selecting suitable medicinal plant varieties, optimizing planting density, and conducting reasonable forest management, thus contributing to the sustainable development and ecological protection of CHM.
Plants, Medicinal/growth & development*
;
Forests
;
Soil/chemistry*
;
Environment
;
Ecosystem
;
Temperature
9.Phase changes and quantity-quality transfer of raw material, calcined decoction pieces, and standard decoction of Ostreae Concha (Ostrea rivularis).
Hong-Yi ZHANG ; Jing-Wei ZHOU ; Jia-Wen LIU ; Wen-Bo FEI ; Shi-Ru HUANG ; Yu-Mei CHEN ; Chong-Yang LI ; Fei-Fei LI ; Qiao-Ling MA ; Fu WANG ; Yuan HU ; You-Ping LIU ; Shi-Lin CHEN ; Lin CHEN ; Hong-Ping CHEN
China Journal of Chinese Materia Medica 2025;50(5):1209-1223
The phase changes and quantity-quality transfer of 17 batches of Ostreae Concha(Ostrea rivularis) during the raw material-calcined decoction pieces-standard decoction process were analyzed. The content of calcium carbonate(CaCO_3), the main component, was determined by chemical titration, and the extract yield and transfer rate were calculated. The CaCO_3 content in the raw material, calcined decoction pieces, and standard decoction was 94.39%-98.80%, 95.03%-99.22%, and 84.58%-90.47%, respectively. The process of raw material to calcined decoction pieces showed the yield range of 96.85% to 98.55% and the CaCO_3 transfer rate range of 96.92% to 99.27%. The process of calcined decoction pieces to standard decoction showed the extract yield range of 2.86% to 5.48% and the CaCO_3 transfer rate range of 2.59% to 5.13%. The results of X-ray fluorescence(XRF) assay showed that the raw material, calcined decoction pieces, and standard decoction mainly contained Ca, Na, Mg, Si, Br, Cl, Al, Fe, Cr, Mn, and K. The chemometric results showed an increase in the relative content of Cr, Fe, and Si from raw material to calcined decoction pieces and an increase in the relative content of Mg, Al, Br, K, Cl, and Na from calcined decoction pieces to standard decoction. X-ray diffraction(XRD) was employed to establish XRD characteristic patterns of the raw material, calcined decoction pieces, and standard decoction. The XRD results showed that the main phase of all three was calcite, and no transformation of crystalline form or generation of new phase was observed. Fourier transform infrared spectroscopy(FTIR) was employed to establish the FTIR characteristic spectra of the raw material, calcined decoction pieces, and standard decoction. The FTIR results showed that the raw material had internal vibrations of O-H, C-H, C=O, C-O, and CO■ groups. Due to the loss of organic matter components after calcination, no information about the vibrations of C-H, C=O, and C-O groups was observed in the spectra of calcined decoction pieces and standard decoction. In summary, this study elucidated the quantity-quality transfer and phase changes in the raw material-calcined decoction pieces-standard decoction process by determining the CaCO_3 content, calculating the extract yield and transfer rate, and comparing the element changes, FTIR characteristic spectra, and XRD characteristic pattern. The results were reasonable and reliable, laying a foundation for the subsequent process research and quality control of the formula granules of calcined Ostreae Concha(O. rivularis Gould), and providing ideas and methods for the quality control of the whole process of raw material-decoction pieces-standard decoction-formula granules of Ostreae Concha and other testacean traditional Chinese medicine.
Drugs, Chinese Herbal/isolation & purification*
;
Calcium Carbonate/analysis*
;
Quality Control
10.Phenylpropanoids from roots of Berberis polyantha.
Dong-Mei SHA ; Shuai-Cong NI ; Li-Niu SHA-MA ; Hai-Xiao-Lin-Mo MA ; Xiao-Yong HE ; Bin HE ; Shao-Shan ZHANG ; Ying LI ; Jing WEN ; Yuan LIU ; Xin-Jia YAN
China Journal of Chinese Materia Medica 2025;50(6):1564-1568
The chemical constituents were systematically separated from the roots of Berberis polyantha by various chromatographic methods, including silica gel column chromatography, HP20 column chromatography, polyamide column chromatography, reversed-phase C_(18) column chromatography, and preparative high-performance liquid chromatography. The structures of the compounds were identified by physicochemical properties and spectroscopic techniques(1D NMR, 2D NMR, UV, MS, and CD). Four phenylpropanoids were isolated from the methanol extract of the roots of B. polyantha, and they were identified as(2R)-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone-O-β-D-glucopyranoside(1), methyl 4-hydroxy-3,5-dimethoxybenzoate(2),(+)-syringaresinol(3), and syringaresinol-4-O-β-D-glucopyranoside(4). Compound 1 was a new compound, and other compounds were isolated from this plant for the first time. The anti-inflammatory activity of these compounds was evaluated based on the release of nitric oxide(NO) in the culture of lipopolysaccharide(LPS)-induced RAW264.7 macrophages. At a concentration of 10 μmol·L~(-1), all the four compounds inhibited the LPS-induced release of NO in RAW264.7 cells, demonstrating potential anti-inflammatory properties.
Plant Roots/chemistry*
;
Animals
;
Mice
;
Berberis/chemistry*
;
RAW 264.7 Cells
;
Macrophages/immunology*
;
Drugs, Chinese Herbal/isolation & purification*
;
Nitric Oxide/metabolism*
;
Molecular Structure
;
Anti-Inflammatory Agents/isolation & purification*


Result Analysis
Print
Save
E-mail