1.PANoptosis: a New Target for Cardiovascular Diseases
Xin-Nong CHEN ; Ying-Xi YANG ; Xiao-Chen GUO ; Jun-Ping ZHANG ; Na-Wen LIU
Progress in Biochemistry and Biophysics 2025;52(5):1113-1125
The innate immune system detects cellular stressors and microbial infections, activating programmed cell death (PCD) pathways to eliminate intracellular pathogens and maintain homeostasis. Among these pathways, pyroptosis, apoptosis, and necroptosis represent the most characteristic forms of PCD. Although initially regarded as mechanistically distinct, emerging research has revealed significant crosstalk among their signaling cascades. Consequently, the concept of PANoptosis has been proposed—an inflammatory cell death pathway driven by caspases and receptor-interacting protein kinases (RIPKs), and regulated by the PANoptosome, which integrates key features of pyroptosis, apoptosis, and necroptosis. The core mechanism of PANoptosis involves the assembly and activation of the PANoptosome, a macromolecular complex composed of three structural components: sensor proteins, adaptor proteins, and effector proteins. Sensors detect upstream stimuli and transmit signals downstream, recruiting critical molecules via adaptors to form a molecular scaffold. This scaffold activates effectors, triggering intracellular signaling cascades that culminate in PANoptosis. The PANoptosome is regulated by upstream molecules such as interferon regulatory factor 1 (IRF1), transforming growth factor beta-activated kinase 1 (TAK1), and adenosine deaminase acting on RNA 1 (ADAR1), which function as molecular switches to control PANoptosis. Targeting these switches represents a promising therapeutic strategy. Furthermore, PANoptosis is influenced by organelle functions, including those of the mitochondria, endoplasmic reticulum, and lysosomes, highlighting organelle-targeted interventions as effective regulatory approaches. Cardiovascular diseases (CVDs), the leading global cause of morbidity and mortality, are profoundly impacted by PCD. Extensive crosstalk among multiple cell death pathways in CVDs suggests a complex regulatory network. As a novel cell death modality bridging pyroptosis, apoptosis, and necroptosis, PANoptosis offers fresh insights into the complexity of cell death and provides innovative strategies for CVD treatment. This review summarizes current evidence linking PANoptosis to various CVDs, including myocardial ischemia/reperfusion injury, myocardial infarction, heart failure, arrhythmogenic cardiomyopathy, sepsis-induced cardiomyopathy, cardiotoxic injury, atherosclerosis, abdominal aortic aneurysm, thoracic aortic aneurysm and dissection, and vascular toxic injury, thereby providing critical clinical insights into CVD pathophysiology. However, the current understanding of PANoptosis in CVDs remains incomplete. First, while PANoptosis in cardiomyocytes and vascular smooth muscle cells has been implicated in CVD pathogenesis, its role in other cell types—such as vascular endothelial cells and immune cells (e.g., macrophages)—warrants further investigation. Second, although pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are known to activate the PANoptosome in infectious diseases, the stimuli driving PANoptosis in CVDs remain poorly defined. Additionally, methodological challenges persist in identifying PANoptosome assembly in CVDs and in establishing reliable PANoptosis models. Beyond the diseases discussed, PANoptosis may also play a role in viral myocarditis and diabetic cardiomyopathy, necessitating further exploration. In conclusion, elucidating the role of PANoptosis in CVDs opens new avenues for drug development. Targeting this pathway could yield transformative therapies, addressing unmet clinical needs in cardiovascular medicine.
2.Effect of Carbohydrate Intake Order on Metabolic Profiles of Endurance Exercise Mice in a High-temperature Environment
Huan-Yu WANG ; Guo-Dong ZHOU ; Ru-Wen WANG ; Jun QIU ; Ru WANG
Progress in Biochemistry and Biophysics 2025;52(6):1529-1543
ObjectiveThe primary objective of this study was to investigate the effects of carbohydrate intake order on post-exercise recovery and metabolic regulation under heat stress, particularly in models of exercise induced fatigue. Given the increasing significance of optimizing nutritional strategies to support performance in extreme environmental conditions, this study aimed to provide experimental evidence that contributes to a better understanding of how the sequence in which carbohydrates are consumed impacts exercise recovery, metabolic homeostasis, and fatigue alleviation in a high-temperature environment. MethodsA mouse model of exercise-induced fatigue was established under high-temperature (35°C) to simulate heat stress. The subjects were divided into 3 distinct groups based on their carbohydrate intake order: the “mixed intake” group (HOT_MIX), where all macronutrients (carbohydrates, proteins, and fats) were consumed in a balanced ratio; the “carbohydrate-first intake” group (HOT_CHO), where carbohydrates were consumed first followed by other macronutrients; the “carbohydrate-later intake” group (HOT_PRO), where proteins and fats were consumed prior to carbohydrates. Each group underwent a 7 d intervention period with daily intake according to their designated group. Exercise performance was assessed using rotarod retention time test, and biomarkers of muscle damage, such as lactate dehydrogenase (LDH), creatine kinase (CK), lactate (LD), alanine aminotransferase (ALT), and non-esterified fatty acids (NEFA), were measured. Furthermore, targeted metabolomics analyses were conducted to investigate metabolic shifts in response to different dietary strategies, and KEGG pathway enrichment analysis was employed to explore the biological mechanisms underlying these changes. ResultsThe findings demonstrated that the HOT_PRO group exhibited a significantly improved performance in the rotarod test, with a longer retention time compared to both the HOT_MIX and HOT_CHO groups (P<0.05). Additionally, this group showed significantly reduced levels of muscle damage markers such as LDH and CK, indicating that the carbohydrate-later intake strategy helped alleviate exercise-induced muscle injury. Metabolomic profiling of the HOT_PRO group showed marked increases in alanine, creatine, and flavin adenine dinucleotide (FAD), indicating shifts in amino acid metabolism and oxidative metabolism. Conversely, metabolites such as spermidine, cholesterol sulfate, cholesterol, and serine were significantly reduced in the HOT_PRO group, pointing to alterations in lipid and sterol metabolism. Further analysis of the differential metabolites revealed that these changes were primarily associated with key metabolic pathways, including glycine-serine-threonine metabolism, primary bile acid biosynthesis, taurine and hypotaurine metabolism, and steroid hormone biosynthesis. These pathways are essential for energy production, antioxidant defense, and muscle recovery, suggesting that the carbohydrate-later feeding strategy may promote metabolic homeostasis and improve exercise recovery by enhancing these critical metabolic processes. ConclusionThe results of this study support the hypothesis that consuming carbohydrates after proteins and fats during exercise recovery enhances metabolic homeostasis and accelerates recovery under heat stress. This strategy effectively modulates energy, amino acid, and lipid-related pathways, which are crucial for improving endurance performance and mitigating fatigue in high-temperature environments. The findings suggest that carbohydrate-later intake could be a promising nutritional strategy for athletes and individuals exposed to heat during physical activity. Furthermore, the study provides valuable insights into how different nutrient timing strategies can impact exercise recovery and metabolic regulation, paving the way for more personalized and effective nutritional interventions in extreme environmental conditions.
3.HMGA2 Promotes Cellular Proliferation, Invasion and Metastasis of Laryngeal Cancer Through TGF-β/Smad Signaling Pathway
Xianxue WEN ; Ruting LI ; Xi WU ; Renbin GUO ; Jun WU ; Lijuan MA
Cancer Research on Prevention and Treatment 2025;52(7):571-577
Objective To investigate the molecular mechanism by which HMGA2 participates in the TGF-β/Smad pathway in the regulation of the proliferation, aggression, and metastasis of laryngeal cancer. Methods shRNA transfection was used to construct the HMGA2 knockdown laryngeal cancer TU686 cell model, and subcutaneous transplantation tumor model and tail vein metastasis tumor model were established in nude mice. Western blot was conducted to detect the expression of HMGA2 and TGF-β/Smad pathway-related molecules in cells and tumor tissues. Results The proliferation, invasion, and metastasis of TU686 cells with HMGA2 knockdown decreased. The expression of TGF-β, Smad2, Smad3, and phosphorylated Smad2/3 protein also decreased. TGF-β1 stimulation of the TGF-β/Smad pathway could partially offset the antitumor effect caused by HMGA2 knockdown. Through in vitro experiments, we determined that low expression of HMGA2 significantly inhibited the growth of subcutaneously transplanted tumors, and TGF-β1 stimulation of the TGF-β/Smad pathway reduced the tumor-inhibitory effect resulting from the low expression of HMGA2. In tail vein metastases of nude mice, E-cadherin expression was elevated but N-cadherin expression was reduced in the HMGA2 knockdown group, suggesting that HMGA2 could inhibit the progression of EMT. After TGF-β1 stimulated the TGF-β/Smad pathway, the EMT effect due to HMGA2 knockdown was lessened. Conclusion HMGA2 may promote the proliferation, invasion, and metastasis of laryngeal cancer by upregulating the TGF-β/Smad signaling pathway.
4.Analysis of the effect of dosimeter wearing position on effective dose estimation among interventional radiology workers
Xuanrong ZHANG ; Wen GUO ; Xian XUE ; Pin GAO ; Kaiyi WANG ; Xuan ZHANG ; Yanqiu DING ; Xiao LUO ; Wenfang MENG ; Jun CHAO
Chinese Journal of Radiological Health 2025;34(5):687-694
Objective To evaluate the influence of the wearing position of dosimeters outside lead aprons on effective dose estimation for interventional radiology workers, analyze the differences between single and double dosimeter methods in effective dose estimation, and provide a reference for the personal dose monitoring of interventional radiology workers. Methods This study employed a combined approach of on-site monitoring and Monte Carlo simulation to evaluate the impact of the wearing position of dosimeters outside lead aprons on effective dose estimation, as well as the differences between effective doses measured using single and double dosimeters. Interventional radiology workers wore dosimeters at three positions: the neck outside the lead collar, the left chest outside the lead apron, and inside the lead apron. Effective doses were estimated using the single and double dosimeter methods specified in GBZ 128-2019 Specifications for individual monitoring of occupational external exposure, and the impact of different wearing positions on the estimation results was compared. Geant4 Monte Carlo simulations were used to model dose distributions at the neck outside the lead collar and at the left chest outside the lead apron for operators performing cardiovascular interventions under tube voltages of 70, 80, 90, and 100 kVp and exposure angles of posteroanterior (PA), anteroposterior (AP), and left anterior oblique 45° (LAO45°) positions. The study assessed the impact of dosimeter wearing position on effective dose estimation. Results Monte Carlo simulations demonstrated that neck doses consistently exceeded left chest doses across different tube voltages and exposure angles, with neck-to-chest dose ratios of 0.80-0.90. Under identical tube voltage conditions, AP showed the highest doses, followed by LAO45°, and PA demonstrated the lowest doses. The single and double dosimeter methods exhibited consistent patterns in effective dose estimation. Single dosimeter method generally yielded higher effective doses with relative deviations of 9.9% to 83%, though these deviations decreased under high tube voltages. Field monitoring data indicated that most interventional radiology workers maintained relative deviations between single and double dosimeter calculations below 6%, with neck-to-chest dose ratios of 0.95-1.1. The estimation patterns remained consistent across both methods, though single dosimeter method showed slightly higher results. Conclusion Under PA, AP, or LAO45°, the doses at the neck consistently exceeded those at the left chest. Therefore, when wearing lead protective equipment, the dosimeter should be properly positioned at the neck outside the lead collar to accurately reflect the radiation doses of surgeons. Some interventional radiology workers improperly positioned the dosimeter (intended at the neck outside the lead collar) at the left chest outside the lead apron, and this may result in an underestimation of the effective dose.
5.The Implementation, Clinical Progress and Technical Challenges of Implantable Brain-Computer Interface Systems
Wen-Can QIU ; Liang MA ; Hao-Yue GUO ; Jun-Jie YANG ; Xiao-Jian LI
Progress in Biochemistry and Biophysics 2024;51(10):2478-2497
The breakthrough progress of implantable brain-computer interfaces (iBCIs) technology in the field of clinical trials has attracted widespread attention from both academia and industry. The development and advancement of this technology have provided new solutions for the rehabilitation of patients with movement disorders. However, challenges from many aspects make it difficult for iBCIs to further implement and transform technologies. This paper illustrates the key challenges restricting the large-scale development of iBCIs from the perspective of system implementation, then discusses the latest clinical application progress in depth, aiming to provide new ideas for researchers. For the system implementation part, we have elaborated the front-end signal collector, signal processing and decoder, then the effector. The most important part of the front-end module is the neural electrode, which can be divided into two types: piercing and attached. These two types of electrodes are newly classified and described. In the signal processing and decoder section, we have discussed the experimental paradigm together with signal processing and decoder for the first time and believed that the experimental paradigm acts as a learning benchmark for decoders that play a pivotal role in iBCIs systems. In addition, the characteristics and roles of the effectors commonly used in iBCIs systems, including cursors and robotic arms, are analyzed in detail. In the clinical progress section, we have divided the latest clinical progress into two categories: functional rehabilitation and functional replacement from the perspective of the application scenarios of iBCIs. Functional rehabilitation and functional replacement are two different types of application, though the boundary between the two is not absolute. To this end, we have first introduced the corresponding clinical trial progress from the three levels: application field, research team, and clinical timeline, and then conducted an in-depth discussion and analysis of their functional boundaries, in order to provide guidance for future research. Finally, this paper mentions that the key technical challenges in the development of iBCIs technology come from multiple aspects. First of all, from the signal acquisition level, high-throughput and highly bio-compatible neural interface designing is essential to ensure long-term stable signal acquisition. The electrode surface modification method and electrode packaging were discussed. Secondly, in terms of decoding performance, real-time, accurate, and robust algorithms have a decisive impact on improving the reliability of iBCIs systems. The third key technology is from the perspective of practicality, we believe that the signal transmission mode of wireless communication is the trend of the future, but it still needs to overcome challenges such as data transmission rate and battery life. Finally, we believe that issues such as ethics, privacy, and security need to be addressed through legal, policy, and technological innovation. In summary, the development of iBCIs technology requires not only the unremitting efforts of scientific researchers, but also the participation and support of policymakers, medical professionals, technology developers, and all sectors of society. Through interdisciplinary collaboration and innovation, iBCIs technology will achieve wider clinical applications in the future and make important contributions to improving the quality of life of patients.
6.Antipyretic and anti-inflammatory effects and quality evaluation of a new type of Lonicera Japonicae Flos granule raw decoction piece
Zhi-jun GUO ; Meng-meng HOU ; Dan GAO ; Yu-han WU ; Ze-min YANG ; Jia-lu WANG ; Bo GAO ; Xi-wen LI
Acta Pharmaceutica Sinica 2024;59(7):2087-2097
Traditional decoction pieces have low efficiency, poor batch-to-batch consistency, and irregular physical form, making it difficult to meet the demands of modern automated production and precise and rapid clinical blending. Therefore, this study aims to develop a new type of granular drinking tablet to meet the demand for high-quality development in the traditional Chinese medicine industry. In the current study, the differences and similarities between the new Lonicerae Japonicae Flos (LJF) granular drinking tablets and the traditional ones were evaluated based on the flowability, the paste rate of the standard soup, the characterization fingerprint, the degree of pasting, the content of active ingredients, the transfer rate, and its traditional antipyretic and anti-inflammatory efficacy, using the traditional
7.Based on LC-MS technology explored the metabolomics of Agrimonia pilosa intervening in non-small cell lung cancer A549 cells
Ze-hua TONG ; Wen-jun GUO ; Han-rui ZOU ; Li-wei XU ; Ya-juan XU ; Wei-fang WANG
Acta Pharmaceutica Sinica 2024;59(3):704-712
The objective of this study was to analyze the effects on cell viability, apoptosis, and cell cycle of non-small cell lung cancer (NSCLC) A549 cells after intervention with
8.Research progress in the immune escape mechanism of Trichinella spiralis
Yan-Hong QIAN ; Shuai SONG ; Xiao-Hui WEN ; Chun-Ling JIA ; Dian-Hong LYU ; Zi-Guo YUAN ; Sheng-Jun LUO
Chinese Journal of Zoonoses 2024;40(1):70-75
Trichinosis is a global food-borne zoonotic parasitic disease caused by Trichinella spiralis(T.spiralis),which causes serious harm to animal production,and the public health safety of humans and animals.T.spiralis has a complex devel-opment history,and its entire life cycle is completed in the same host.To coexist with the host,it has evolved various immune escape mechanisms for avoiding immune clearance by the host,thus establishing long-term chronic infection.In this study,to aid in understanding the pathogenic mechanism of T.spiralis,the immune escape mechanism of Trichinella is discussed from three aspects:the molecular role of antigens in various stages,the immune regulatory effect on the host,and the formation of cysts to generate immune isolation.
9.Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults (version 2024)
Qingde WANG ; Yuan HE ; Bohua CHEN ; Tongwei CHU ; Jinpeng DU ; Jian DONG ; Haoyu FENG ; Shunwu FAN ; Shiqing FENG ; Yanzheng GAO ; Zhong GUAN ; Hua GUO ; Yong HAI ; Lijun HE ; Dianming JIANG ; Jianyuan JIANG ; Bin LIN ; Bin LIU ; Baoge LIU ; Chunde LI ; Fang LI ; Feng LI ; Guohua LYU ; Li LI ; Qi LIAO ; Weishi LI ; Xiaoguang LIU ; Hongjian LIU ; Yong LIU ; Zhongjun LIU ; Shibao LU ; Yong QIU ; Limin RONG ; Yong SHEN ; Huiyong SHEN ; Jun SHU ; Yueming SONG ; Tiansheng SUN ; Yan WANG ; Zhe WANG ; Zheng WANG ; Hong XIA ; Guoyong YIN ; Jinglong YAN ; Wen YUAN ; Zhaoming YE ; Jie ZHAO ; Jianguo ZHANG ; Yue ZHU ; Yingjie ZHOU ; Zhongmin ZHANG ; Wei MEI ; Dingjun HAO ; Baorong HE
Chinese Journal of Trauma 2024;40(2):97-106
Ankylosing spondylitis (AS) combined with lower cervical fracture is often categorized into unstable fracture, with a high incidence of neurological injury and a high rate of disability and morbidity. As factors such as shoulder occlusion may affect the accuracy of X-ray imaging diagnosis, it is often easily misdiagnosed at the primary diagnosis. Non-operative treatment has complications such as bone nonunion and the possibility of secondary neurological damage, while the timing, access and choice of surgical treatment are still controversial. Currently, there are no clinical practice guidelines for the treatment of AS combined with lower cervical fracture with or without dislocation. To this end, the Spinal Trauma Group of Orthopedics Branch of Chinese Medical Doctor Association organized experts to formulate Clinical guidelines for the treatment of ankylosing spondylitis combined with lower cervical fracture in adults ( version 2024) in accordance with the principles of evidence-based medicine, scientificity and practicality, in which 11 recommendations were put forward in terms of the diagnosis, imaging evaluation, typing and treatment, etc, to provide guidance for the diagnosis and treatment of AS combined with lower cervical fracture.
10.MRI-based habitat radiomics analysis for identifying molecular subtypes of endometrial cancer:a feasible study from two institutions
Wen-Tao JIN ; Tian-Ping WANG ; Xiao-Jun CHEN ; Guo-Fu ZHANG ; Hai-Ming LI ; He ZHANG
Fudan University Journal of Medical Sciences 2024;51(6):890-899
Objective To develop an MRI-based habitat radiomics model for the preoperative prediction of endometrial cancer(EC)molecular subtypes.Methods Patients with pathologically proven EC from two hospitals were included in the training(n=270)and testing(n=70)cohorts.All patients had preoperative MRI and histological and molecular diagnoses.First,the tumor was divided into habitat subregions based on diffusion-weighted imaging(DWI)and contrast-enhanced(CE)images.Subsequently,habitat radiomic features were extracted from different subregions of T1-weighted imaging(T1WI),T2-weighted imaging(T2WI),DWI,and CE images.Three machine learning classifiers,including logistic regression,support vector machines,and random forests,were applied to develop predictive models for p53-abnormal endometrial cancer,with model performance validated.The model demonstrating the best overall predictive performance was selected as the habitat radiomics model.Using the same procedure,a whole-region radiomics model based on T1WI,T2WI,DWI,and CE sequences and a clinical model were constructed.The performance of the models was evaluated using receiver operating characteristic curves,and DeLong's test was employed to compare differences between the models.Decision curve analysis was used to assess the clinical benefits of the models'application.Results After feature selection,eight habitat radiomic features were retained to construct the habitat radiomics model,ten features for the whole-region radiomics model,and three clinical features for the clinical model.The habitat radiomics model achieved the highest area under the curve(AUC),with 0.855(0.788-0.922)in the training cohort and 0.769(0.631-0.907)in the testing cohort.DeLong's test showed that the habitat radiomics model outperformed the whole-region radiomics model in the training cohort(P=0.001),but there was no significant difference in the testing cohort(P=0.543).In both cohorts,the habitat radiomics model outperformed the clinical model(P=0.007,training cohort;P=0.038,testing cohort).Decision curve analysis(DCA)demonstrated that this model provided clinical benefit for diagnosis within a threshold probability range of approximately 0.2-0.8.Conclusion The MRI-based habitat radiomics model can accurately predict p53-abnormal EC,outperforming both the whole-region radiomics model and the clinical model,and is useful for the non-invasive molecular subtyping of endometrial cancer before surgery.

Result Analysis
Print
Save
E-mail