1.Clinical Efficacy of Tangning Tongluo Tablets for Nonproliferative Diabetic Retinopathy
Fuwen ZHANG ; Junguo DUAN ; Wen XIA ; Tiantian SUN ; Yuheng SHI ; Shicui MEI ; Xiangxia LUO ; Xing LI ; Yujie PAN ; Yong DENG ; Chuanlian RAN ; Hao CHEN ; Li PEI ; Shuyu YANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):132-139
ObjectiveTo observe the clinical efficacy and safety of Tangning Tongluo tablets in the treatment of nonproliferative diabetic retinopathy (DR). MethodsFourteen research centers participated in this study, which spanned a time interval from September 2021 to May 2023. A total of 240 patients with nonproliferative DR were included and randomly assigned into an observation group (120 cases) and a control group (120 cases). The observation group was treated with Tangning Tongluo tablets, and the control group with calcium dobesilate capsules. Both groups were treated for 24 consecutive weeks. The vision, DR progression rate, retinal microhemangioma, hemorrhage area, exudation area, glycosylated hemoglobin (HbA1c) level, and TCM syndrome score were assessed before and after treatment, and the safety was observed. ResultsThe vision changed in both groups after treatment (P<0.05), and the observation group showed higher best corrected visual acuity (BCVA) than the control group (P<0.05). The DR progression was slow with similar rates in the two groups. The fundus hemorrhage area and exudation area did not change significantly after treatment in both groups, while the observation group outperformed the control group in reducing the fundus hemorrhage area and exudation area. There was no significant difference in the number of microhemangiomas between the two groups before treatment. After treatment, the number of microhemangiomas decreased in both the observation group (Z=-1.437, P<0.05) and the control group (Z=-2.238, P<0.05), and it showed no significant difference between the two groups. As the treatment time prolonged, the number of microhemangiomas gradually decreased in both groups. There was no significant difference in the HbA1c level between the two groups before treatment. After treatment, the decline in the HbA1c level showed no significant difference between the two groups. The TCM syndrome score did not have a statistically significant difference between the two groups before treatment. After treatment, neither the TCM syndrome score nor the response rate had significant difference between the two groups. With the extension of the treatment time, both groups showed amelioration of TCM syndrome compared with the baseline. ConclusionTangning Tongluo tablets are safe and effective in the treatment of nonproliferative DR, being capable of improving vision and reducing hemorrhage and exudation in the fundus.
2.Inhibition of HDAC3 Promotes Psoriasis Development in Mice Through Regulating Th17
Fan XU ; Xin-Rui ZHANG ; Yang-Chen XIA ; Wen-Ting LI ; Hao CHEN ; An-Qi QIN ; Ai-Hong ZHANG ; Yi-Ran ZHU ; Feng TIAN ; Quan-Hui ZHENG
Progress in Biochemistry and Biophysics 2025;52(4):1008-1017
ObjectiveTo investigate the influence of histone deacetylase 3 (HDAC3) on the occurrence, development of psoriasis-like inflammation in mice, and the relative immune mechanisms. MethodsHealthy C57BL/6 mice aged 6-8 weeks were selected and randomly divided into 3 groups: control group (Control), psoriasis model group (IMQ), and HDAC3 inhibitor RGFP966-treated psoriasis model group (IMQ+RGFP966). One day prior to the experiment, the back hair of the mice was shaved. After a one-day stabilization period, the mice in Control group was treated with an equal amount of vaseline, while the mice in IMQ group was treated with imiquimod (62.5 mg/d) applied topically on the back to establish a psoriasis-like inflammation model. The mice in IMQ+RGFP966 group received intervention with a high dose of the HDAC3-selective inhibitor RGFP966 (30 mg/kg) based on the psoriasis-like model. All groups were treated continuously for 5 d, during which psoriasis-like inflammation symptoms (scaling, erythema, skin thickness), body weight, and mental status were observed and recorded, with photographs taken for documentation. After euthanasia, hematoxylin-eosin (HE) staining was used to assess the effect of RGFP966 on the skin tissue structure of the mice, and skin thickness was measured. The mRNA and protein expression levels of HDAC3 in skin tissues were detected using reverse transcription real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot (WB), respectively. Flow cytometry was employed to analyze neutrophils in peripheral blood and lymph nodes, CD4+ T lymphocytes, CD8+ T lymphocytes in peripheral blood, and IL-17A secretion by peripheral blood CD4+ T lymphocytes. Additionally, spleen CD4+ T lymphocyte expression of HDAC3, CCR6, CCR8, and IL-17A secretion levels were analyzed. Immunohistochemistry was used to detect the localization and expression levels of HDAC3, IL-17A, and IL-10 in skin tissues. ResultsCompared with the Control group, the IMQ group exhibited significant psoriasis-like inflammation, characterized by erythema, scaling, and skin wrinkling. Compared with the IMQ group, RGFP966 exacerbated psoriasis-like inflammatory symptoms, leading to increased hyperkeratosis. The psoriasis area and severity index (PASI) skin symptom scores were higher in the IMQ group than those in the Control group, and the scores were further elevated in the IMQ+RGFP966 group compared to the IMQ group. Skin thickness measurements showed a trend of IMQ+RGFP966>IMQ>Control. The numbers of neutrophils in the blood and lymph nodes increased sequentially in the Control, IMQ, and IMQ+RGFP966 groups, with a similar trend observed for CD4+ and CD8+ T lymphocytes in the blood. In skin tissues, compared with the Control group, the mRNA and protein levels of HDAC3 decreased in the IMQ group, but RGFP966 did not further reduce these expressions. HDAC3 was primarily located in the nucleus. Compared with the Control group, the nuclear HDAC3 content decreased in the skin tissues of the IMQ group, and RGFP966 further reduced nuclear HDAC3. Compared with the Control and IMQ groups, RGFP966 treatment decreased HDAC3 expression in splenic CD4+ and CD8+ T cells. RGFP966 treatment increased the expression of CCR6 and CCR8 in splenic CD4+ T cells and enhanced IL-17A secretion by peripheral blood and splenic CD4+ T lymphocytes. Additionally, compared with the IMQ group, RGFP966 reduced IL-10 protein levels and upregulated IL-17A expression in skin tissues. ConclusionRGFP966 exacerbates psoriatic-like inflammatory responses by inhibiting HDAC3, increasing the secretion of the cytokine IL-17A, and upregulating the expression of chemokines CCR8 and CCR6.
3.Effectiveness of the integrated schistosomiasis control programme in Wuhan City from 2005 to 2023
Shuai WANG ; Huatang LUO ; Yang LI ; Hao WANG ; Cong LIU ; Yuelin XIONG ; Jiajing ZHANG ; Wen ZHU
Chinese Journal of Schistosomiasis Control 2025;37(2):176-183
Objective To evaluate the effectiveness of the integrated schistosomiasis control programme in Wuhan City from 2005 to 2023, so as to provide insights into precision control and elimination of schistosomiasis. Methods The integrated measures for schistosomiasis control implemented by health, agriculture, water resources, and forestry departments of Wuhan City, and the epidemiological data of schistosomiasis in Wuhan City were collected from 2005 to 2023, and the prevalence of human schistosomiasis, prevalence of Schistosoma japonicum infections in humans and bovines, areas of S. japonicum-infected snail habitats, areas of snail habitats in inner embankments, and actual areas of snail habitats were retrieved. In addition, the trends in prevalence of schistosomiasis in humans and livestock and snail status were evaluated in Wuhan City from 2005 to 2023 using Mann-Kendall test and a Joinpoint regression model. Results Mann-Kendall test revealed a tendency towards a decline in the prevalence of human schistosomiasis (Z = -4.41, P < 0.01), prevalence of S. japonicum infections in humans (Z = -4.89, P < 0.01) and bovines (Z = -4.50, P < 0.01), areas of S. japonicum-infected snail habitats (Z = -3.91, P < 0.01), areas of snail habitats in inner embankments (Z = -2.28, P = 0.02), and actual areas of snail habitats (Z = -5.95, P < 0.01) in Wuhan City from 2005 to 2023. Joinpoint regression analysis showed an average annual reduction of 8.58% in the prevalence of human schistosomiasis in Wuhan City from 2005 to 2023 [average annual percent change (AAPC) = -8.58%, 95% confidence interval (CI): (-10.02%, -6.65%), P < 0.01], with two joinpoints in 2013 and 2016, respectively, and the tendency towards a decline showed statistical significance during the period from 2013 through 2016 [annual percent change (APC) = -34.41%, 95% CI: (-40.36%, -20.01%), P < 0.01]. The prevalence of S. japonicum human infections appeared an average annual reduction of 51.91% in Wuhan City from 2005 to 2023 [AAPC = -51.91%, 95% CI: (-58.12%, -44.25%), P < 0.01], with two joinpoints in 2014 and 2017, respectively, and the tendency towards a decline showed statistical significance during the period from 2014 through 2017 [APC = -98.17%, 95% CI: (-99.17%, -90.87%), P < 0.01]. The prevalence of S. japonicum infections in bovines appeared an average annual reduction of 53.12% in Wuhan City from 2005 to 2023 [AAPC = -53.12%, 95% CI: (-59.65%, -42.44%), P < 0.01], with two joinpoints in 2011 and 2014, respectively, and the tendency towards a decline showed statistical significance during the period from 2014 through 2017 [APC = -98.63%, 95% CI: (-99.44%, -90.93%), P < 0.01]. The areas of S. japonicum-infected snail habitats appeared an average annual reduction of 47.09% in Wuhan City from 2005 to 2023 [AAPC = -47.09%, 95% CI: (-52.92%, -38.26%), P < 0.01], with two joinpoints in 2011 and 2014, respectively, and the tendency towards a decline showed statistical significance during the period from 2011 through 2014 [APC = -97.27%, 95% CI: (-98.65%, -88.06%), P < 0.01]. The areas of snail habitats in inner embankments appeared an average annual reduction of 4.45% in Wuhan City from 2005 to 2023 [AAPC = -4.45%, 95% CI: (-5.18%, -3.82%), P < 0.01], with three joinpoints in 2011, 2015 and 2018, respectively, and statistical significance was seen in the tendency towards a decline during the period from 2005 through 2011 [APC = -16.38%, 95% CI: (-20.15%, -14.25%), P < 0.01]. In addition, the actual areas of snail habitats appeared an average annual reduction of 2.65% in Wuhan City from 2005 to 2023 [AAPC = -2.65%, 95% CI: (-2.89%, -2.40%), P < 0.01], with a joinpoint in 2013, and the tendency towards a decline showed statistical significance during the period from 2013 through 2023 [APC = -4.06%, 95% CI: (-4.66%, -3.58%), P < 0.01]. Conclusions The integrated schistosomiasis control programme achieved significant effectiveness in Wuhan City from 2005 to 2023, with a tendency towards a decline in morbidity due to schistosomiasis in humans and livestock and snail status. The integrated schistosomiasis control strategy with emphasis on management of the source of S. japonicum infections should continue to be implemented to consolidate the schistosomiasis control achievements and achieve the goal of schistosomiasis elimination in the city.
4.Targeting PPARα for The Treatment of Cardiovascular Diseases
Tong-Tong ZHANG ; Hao-Zhuo ZHANG ; Li HE ; Jia-Wei LIU ; Jia-Zhen WU ; Wen-Hua SU ; Ju-Hua DAN
Progress in Biochemistry and Biophysics 2025;52(9):2295-2313
Cardiovascular disease (CVD) remains one of the leading causes of mortality among adults globally, with continuously rising morbidity and mortality rates. Metabolic disorders are closely linked to various cardiovascular diseases and play a critical role in their pathogenesis and progression, involving multifaceted mechanisms such as altered substrate utilization, mitochondrial structural and functional dysfunction, and impaired ATP synthesis and transport. In recent years, the potential role of peroxisome proliferator-activated receptors (PPARs) in cardiovascular diseases has garnered significant attention, particularly peroxisome proliferator-activated receptor alpha (PPARα), which is recognized as a highly promising therapeutic target for CVD. PPARα regulates cardiovascular physiological and pathological processes through fatty acid metabolism. As a ligand-activated receptor within the nuclear hormone receptor family, PPARα is highly expressed in multiple organs, including skeletal muscle, liver, intestine, kidney, and heart, where it governs the metabolism of diverse substrates. Functioning as a key transcription factor in maintaining metabolic homeostasis and catalyzing or regulating biochemical reactions, PPARα exerts its cardioprotective effects through multiple pathways: modulating lipid metabolism, participating in cardiac energy metabolism, enhancing insulin sensitivity, suppressing inflammatory responses, improving vascular endothelial function, and inhibiting smooth muscle cell proliferation and migration. These mechanisms collectively reduce the risk of cardiovascular disease development. Thus, PPARα plays a pivotal role in various pathological processes via mechanisms such as lipid metabolism regulation, anti-inflammatory actions, and anti-apoptotic effects. PPARα is activated by binding to natural or synthetic lipophilic ligands, including endogenous fatty acids and their derivatives (e.g., linoleic acid, oleic acid, and arachidonic acid) as well as synthetic peroxisome proliferators. Upon ligand binding, PPARα activates the nuclear receptor retinoid X receptor (RXR), forming a PPARα-RXR heterodimer. This heterodimer, in conjunction with coactivators, undergoes further activation and subsequently binds to peroxisome proliferator response elements (PPREs), thereby regulating the transcription of target genes critical for lipid and glucose homeostasis. Key genes include fatty acid translocase (FAT/CD36), diacylglycerol acyltransferase (DGAT), carnitine palmitoyltransferase I (CPT1), and glucose transporter (GLUT), which are primarily involved in fatty acid uptake, storage, oxidation, and glucose utilization processes. Advancing research on PPARα as a therapeutic target for cardiovascular diseases has underscored its growing clinical significance. Currently, PPARα activators/agonists, such as fibrates (e.g., fenofibrate and bezafibrate) and thiazolidinediones, have been extensively studied in clinical trials for CVD prevention. Traditional PPARα agonists, including fenofibrate and bezafibrate, are widely used in clinical practice to treat hypertriglyceridemia and low high-density lipoprotein cholesterol (HDL-C) levels. These fibrates enhance fatty acid metabolism in the liver and skeletal muscle by activating PPARα, and their cardioprotective effects have been validated in numerous clinical studies. Recent research highlights that fibrates improve insulin resistance, regulate lipid metabolism, correct energy metabolism imbalances, and inhibit the proliferation and migration of vascular smooth muscle and endothelial cells, thereby ameliorating pathological remodeling of the cardiovascular system and reducing blood pressure. Given the substantial attention to PPARα-targeted interventions in both basic research and clinical applications, activating PPARα may serve as a key therapeutic strategy for managing cardiovascular conditions such as myocardial hypertrophy, atherosclerosis, ischemic cardiomyopathy, myocardial infarction, diabetic cardiomyopathy, and heart failure. This review comprehensively examines the regulatory roles of PPARα in cardiovascular diseases and evaluates its clinical application value, aiming to provide a theoretical foundation for further development and utilization of PPARα-related therapies in CVD treatment.
5.Cross sectional and cross lagged network analyses of Internet addiction among university students
GOU Hao, HUANG Wenying, SUN Qunqun, HU Chang, ZHANG Wen, XIANG Luyao, SONG Chao
Chinese Journal of School Health 2025;46(9):1287-1291
Objective:
To understand the dynamic temporal evolution pathways of Internet addiction among university students and to identify the core driving nodes, so as to provide theoretical evidences for the precise implementation of targeted interventions.
Methods:
Using a convenient cluster sampling method, a total of 1 066 full time freshmen and sophomores were recruited from three universities in Guizhou, Jiangxi, and Guangdong Provinces for a follow up survey (T1:January-March 2024; T2:January-March 2025). The Revised Chen Internet Addiction Scale (CIAS-R) was employed to assess the status of Internet addiction among university students, and cross sectional as well as cross lagged panel network models were constructed to analyze Internet addiction and its multidimensional influencing factors.
Results:
The T1 network comprised 19 nodes and 114 non zero edges, while the T2 network comprised 19 nodes and 126 non zero edges. Cross sectional network analysis revealed the strongest association between "insufficient sleep" and "daytime fatigue"; the core nodes were "first thought upon waking for going online" and "feeling low after disconnection" (characteristics of psychological dependence) at T1, while the core nodes shifted to "impaired health" and "excitement when online" (characteristics of functional impairment and addictive psychodynamic features) at T2. Cross lagged network analysis further indicated that "reduced leisure" directly predicted "sleep compression", and a bidirectional relationship was observed between "needing more time to achieve satisfaction" and "academic decline".
Conclusions
Internet addiction among university students exhibits dynamic evolutionary characteristics. Stage specific targeted interventions focusing on core driving nodes are needed, integrating behavioral regulation and academic support to break the vicious cycle and enhancing the ability to cope with real life demands.
6.Drug resistance of multidrug-resistant organism in hospitalized children at a children's hospital in Hebei Province
SUN Ling ; LIU Yuanqing ; LIU Xinguang ; ZHANG Nan ; WEN Chan ; HAO Jianzong ; LI Mei
Journal of Preventive Medicine 2025;37(6):616-621
Objective:
To analyze the drug resistance of multidrug-resistant organism (MDRO) among hospitalized children in a children's hospital in Hebei Province from 2019 to 2023, so as to provide the basis for the rational clinical application of antibacterial drugs.
Methods:
Specimens including sputum, blood, urine, pus, bronchoalveolar lavage fluid, secretions, pleural fluid, and peritoneal fluid of hospitalized children from January 2019 to December 2023 were collected. Pathogen identification and drug susceptibility tests were performed on methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum β-lactamase-producing Escherichia coli (ESBLs-EC), extended-spectrum β-lactamase-producing Klebsiella pneumoniae (ESBLs-KP), carbapenem-resistant Klebsiella pneumoniae (CRKP), carbapenem-resistant Acinetobacter baumannii (CRAB), carbapenem-resistant Pseudomonas aeruginosa (CRPA) and carbapenem-resistant Escherichia coli (CREC). The department distribution, specimen distribution, and drug resistance of MDROs were analyzed.
Results:
A total of 279 086 samples were submitted for testing, with 3 512 MDROs detected. Among these, MRSA and ESBLs-EC had relatively high detection rates of 35.76% and 41.50%, respectively. In the internal medicine pediatric patients, 1 869 MDROs were detected, accounting for 53.22%. The main departments were respiratory medicine, neonatology, and intensive care. In the surgical department, 1 643 MDROs were detected, accounting for 46.78%, with the main sources being general surgery and cardiac surgery. The highest numbers of MDROs were detected in sputum, pus, and urine samples, with 1 372, 527, and 494 isolates, representing 39.07%, 15.01%, and 14.07%, respectively. The resistance rates of MRSA to penicillin, oxacillin, and erythromycin were between 81.76% and 100.00%. ESBLs-EC and ESBLs-KP had a resistance rate of 100.00% to ceftriaxone. CRKP had a resistance rate of 100.00% to ampicillin/sulbactam and imipenem. CRAB had a resistance rate of 100.00% to cefoxitin, imipenem, and meropenem. CRPA had a resistance rate of 100.00% to ampicillin/sulbactam, ceftriaxone, cefoxitin, and imipenem. CREC had a resistance rate of 100.00% to imipenem.
Conclusions
In a children's hospital in Hebei Province, infections with MDROs among hospitalized pediatric patients are primarily caused by MRSA and ESBLs-EC. These infections are mainly distributed in the departments of respiratory medicine, neonatology, intensive care, general surgery, and cardiac surgery, with the highest detection rates in sputum, pus, and urine samples. Additionally, MRSA, ESBLs-EC, ESBLs-KP, CRKP, CRAB, CRPA, and CREC show high resistance rate to most antimicrobial agents.
7.CT signs and AI parameters predict colorectal cancer neoadjuvant chemotherapy efficacy
Guobin LAN ; Chuang LIU ; Hao WANG ; Hongyu MA ; Zeliang LI ; Wen CHEN ; Wenqiang ZHANG
Chinese Journal of Radiological Health 2025;34(5):713-719
Objective To explore the value of CT signs and quantitative parameters of artificial intelligence (AI) in predicting the efficacy of neoadjuvant chemotherapy for colorectal cancer. Methods A total of 349 colorectal cancer patients who received neoadjuvant chemotherapy at Cangzhou Hospital of Integrated Traditional Chinese and Western Medicine in Hebei Province from January 2022 to January 2025 were selected and and divided into the effective group (n = 267) and the ineffective group (n = 82) according to the evaluation criteria for the efficacy of solid tumors. Conduct a CT examination and extract AI quantitative parameters from the CT images based on the lesion. The data were analyzed using SPSS21.0 software, Logistic regression was used to screen the influencing factors of ineffective neoadjuvant chemotherapy in patients with colorectal cancer, and separate and combined models of CT signs and AI quantitative parameters were established. The predictive effect of the model was verified by using the ROC curve, calibration curve and decision curve. Results Compared with the effective group, the proportion of regular tumor morphology and the proportion of non-enlarged lymph nodesin the ineffective group were smaller. The tumor volume, peak value and entropy value were larger (P < 0.05). Multivariable analysis showed that irregular shape (OR= 4.216), presence of lymph node enlargement (OR = 8.998), larger tumor volume (OR = 1.109), higher average CT value (OR = 1.120), elevated peak value (OR = 2.528), and increased entropy value (OR = 1.390) were independent risk factors for ineffective neoadjuvant chemotherapy in colorectal cancer (P < 0.05). The areas under the ROC curves of the individual and combined models of CT signs and AI quantitative parameters were 0.777, 0.818, and 0.877, respectively(P < 0.05). The calibration curve showed a Brier score of 0.091. The decision curve showed that the threshold was between 0.10 and 0.85, and the combined model achieved a relatively high net clinical benefit. Conclusion CT signs combined with AI quantitative parameters has a predictive value for the efficacy of neoadjuvant chemotherapy in colorectal cancer. To provide evidence-based basis for clinical screening of the population benefiting from chemotherapy and optimization of treatment strategies.
8.Xinyang Tablets ameliorate ventricular remodeling in heart failure via FTO/m6A signaling pathway.
Dong-Hua LIU ; Zi-Ru LI ; Si-Jing LI ; Xing-Ling HE ; Xiao-Jiao ZHANG ; Shi-Hao NI ; Wen-Jie LONG ; Hui-Li LIAO ; Zhong-Qi YANG ; Xiao-Ming DONG
China Journal of Chinese Materia Medica 2025;50(4):1075-1086
The study was conducted to investigate the mechanism of Xinyang Tablets( XYP) in modulating the fat mass and obesity-associated protein(FTO)/N6-methyladenosine(m6A) signaling pathway to ameliorate ventricular remodeling in heart failure(HF). A mouse model of HF was established by transverse aortic constriction(TAC). Mice were randomized into sham, model, XYP(low, medium, and high doses), and positive control( perindopril) groups(n= 10). From day 3 post-surgery, mice were administrated with corresponding drugs by gavage for 6 consecutive weeks. Following the treatment, echocardiography was employed to evaluate the cardiac function, and RT-qPCR was employed to determine the relative m RNA levels of key markers, including atrial natriuretic peptide( ANP), B-type natriuretic peptide( BNP), β-myosin heavy chain(β-MHC), collagen type I alpha chain(Col1α), collagen type Ⅲ alpha chain(Col3α), alpha smooth muscle actin(α-SMA), and FTO. The cardiac tissue was stained with Masson's trichrome and wheat germ agglutinin(WGA) to reveal the pathological changes. Immunohistochemistry was employed to detect the expression levels of Col1α, Col3α, α-SMA, and FTO in the myocardial tissue. The m6A modification level in the myocardial tissue was measured by the m6A assay kit. An H9c2 cell model of cardiomyocyte injury was induced by angiotensin Ⅱ(AngⅡ), and small interfering RNA(siRNA) was employed to knock down FTO expression. RT-qPCR was conducted to assess the relative m RNA levels of FTO and other genes associated with cardiac remodeling. The m6A modification level was measured by the m6A assay kit, and Western blot was employed to determine the phosphorylated phosphatidylinositol 3-kinase(p-PI3K)/phosphatidylinositol 3-kinase(PI3K) and phosphorylated serine/threonine kinase(p-Akt)/serine/threonine kinase(Akt) ratios in cardiomyocytes. The results of animal experiments showed that the XYP treatment significantly improved the cardiac function, reduced fibrosis, up-regulated the m RNA and protein levels of FTO, and lowered the m6A modification level compared with the model group. The results of cell experiments showed that the XYP-containing serum markedly up-regulated the m RNA level of FTO while decreasing the m6A modification level and the p-PI3K/PI3K and p-Akt/Akt ratios in cardiomyocytes. Furthermore, FTO knockdown reversed the protective effects of XYP-containing serum on Ang Ⅱ-induced cardiomyocyte hypertrophy. In conclusion, XYP may ameliorate ventricular remodeling by regulating the FTO/m6A axis, thereby inhibiting the activation of the PI3K/Akt signaling pathway.
Animals
;
Ventricular Remodeling/drug effects*
;
Heart Failure/physiopathology*
;
Signal Transduction/drug effects*
;
Mice
;
Male
;
Alpha-Ketoglutarate-Dependent Dioxygenase FTO/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
;
Humans
;
Adenosine/analogs & derivatives*
;
Myocytes, Cardiac/metabolism*
;
Disease Models, Animal
9.Efficacy and mechanism of Guizhi Tongluo Tablets in alleviating atherosclerosis by inhibiting CD72hi macrophages.
Xing-Ling HE ; Si-Jing LI ; Zi-Ru LI ; Dong-Hua LIU ; Xiao-Jiao ZHANG ; Huan HE ; Xiao-Ming DONG ; Wen-Jie LONG ; Wei-Wei ZHANG ; Hui-Li LIAO ; Lu LU ; Zhong-Qi YANG ; Shi-Hao NI
China Journal of Chinese Materia Medica 2025;50(5):1298-1309
This study investigates the effect and underlying mechanism of Guizhi Tongluo Tablets(GZTL) in treating atherosclerosis(AS) in a mouse model. Apolipoprotein E-knockout(ApoE~(-/-)) mice were randomly assigned to the following groups: model, high-, medium-, and low-dose GZTL, and atorvastatin(ATV), and age-matched C57BL/6J mice were selected as the control group. ApoE~(-/-) mice in other groups except the control group were fed with a high-fat diet for the modeling of AS and administrated with corresponding drugs via gavage for 8 weeks. General conditions, signs of blood stasis, and body mass of mice were monitored. Aortic plaques and their stability were assessed by hematoxylin-eosin, Masson, and oil red O staining. Serum levels of total cholesterol(TC), triglycerides(TG), and low-density lipoprotein cholesterol(LDL-C) were measured by biochemical assays, and those of interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6) were determined via enzyme-linked immunosorbent assay. Apoptosis was assessed by terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL). Single-cell RNA sequencing(scRNA-seq) was employed to analyze the differential expression of CD72hi macrophages(CD72hi-Mφ) in the aortas of AS patients and mice. The immunofluorescence assay was employed to visualize CD72hi-Mφ expression in mouse aortic plaques, and real-time fluorescence quantitative PCR was utilized to determine the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. The results demonstrated that compared with the control group, the model group exhibited significant increases in body mass, aortic plaque area proportion, necrotic core area proportion, and lipid deposition, a notable decrease in collagen fiber content, and an increase in apoptosis. Additionally, the model group showcased elevated serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6, alongside marked upregulations in the mRNA levels of IL-1β, TNF-α, and IL-6 in the aorta. In comparison with the model group, the GZTL groups and the ATV group showed a reduction in body mass, and the medium-and high-dose GZTL groups and the ATV group demonstrated reductions in aortic plaque area proportion, necrotic core area proportion, and lipid deposition, an increase in collagen fiber content, and a decrease in apoptosis. Furthermore, the treatment goups showcased lowered serum levels of TC, TG, LDL-C, IL-1β, TNF-α, and IL-6. The data of scRNA-seq revealed significantly elevated CD72hi-Mφ signaling in carotid plaques of AS patients compared with that in the normal arterial tissue. Animal experiments confirmed that CD72hi-Mφ expression, along with several pro-inflammatory cytokines, was significantly upregulated in the aortas of AS mice, which were downregulated by GZTL treatment. In conclusion, GZTL may alleviate AS by inhibiting CD72hi-Mφ activity.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Atherosclerosis/immunology*
;
Mice
;
Mice, Inbred C57BL
;
Macrophages/immunology*
;
Male
;
Humans
;
Apolipoproteins E/genetics*
;
Tablets
;
Tumor Necrosis Factor-alpha/genetics*
;
Apoptosis/drug effects*
;
Interleukin-1beta/genetics*
;
Interleukin-6/genetics*
;
Disease Models, Animal
;
Mice, Knockout
10.Research progress on pharmacological effects and mechanism of α-asarone and β-asarone in Acori Tatarinowii Rhizoma.
Hao WANG ; Lei GAO ; Jin-Lian ZHANG ; Ling-Yun ZHONG ; Shu-Han JIN ; Xiao-Yan CHEN ; Wen ZHANG ; Jia-Wen WEN
China Journal of Chinese Materia Medica 2025;50(9):2305-2316
Acori Tatarinowii Rhizoma is the dried rhizome of Acorus tatarinowii in the family of Tennantiaceae, which has the efficacy of opening up the orifices and expelling phlegm, awakening the mind and wisdom, and resolving dampness and opening up the stomach. Modern studies have shown that volatile oil is the main active ingredient of Acori Tatarinowii Rhizoma, and α-asarone and β-asarone have been proved to be the active ingredients in the volatile oil of Acori Tatarinowii Rhizoma, with pharmacological effects such as anti-Alzheimer's disease, antiepileptic, anti-Parkinson's disease, antidepressant, anticerebral ischemia/reperfusion injury, anti-thrombosis, lipid-lowering, and antitumor. By summarising and outlining the pharmacological effects of α-asarone and β-asarone and elucidating the possible mechanisms of their pharmacological effects, we can provide theoretical basis for the further research and clinical application of Acori Tatarinowii Rhizoma.
Allylbenzene Derivatives
;
Acorus/chemistry*
;
Anisoles/chemistry*
;
Rhizome/chemistry*
;
Drugs, Chinese Herbal/chemistry*
;
Humans
;
Animals


Result Analysis
Print
Save
E-mail