1.Study on secondary metabolites of Penicillium expansum GY618 and their tyrosinase inhibitory activities
Fei-yu YIN ; Sheng LIANG ; Qian-heng ZHU ; Feng-hua YUAN ; Hao HUANG ; Hui-ling WEN
Acta Pharmaceutica Sinica 2025;60(2):427-433
Twelve compounds were isolated from the rice fermentation extracts of
2.Molecular mechanism of magnesium alloy promoting macrophage M2 polarization through modulation of PI3K/AKT signaling pathway for tendon-bone healing in rotator cuff injury repair.
Xianhao SHENG ; Wen ZHANG ; Shoulong SONG ; Fei ZHANG ; Baoxiang ZHANG ; Xiaoying TIAN ; Wentao XIONG ; Yingguang ZHU ; Yuxin XIE ; Zi'ang LI ; Lili TAN ; Qiang ZHANG ; Yan WANG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(2):174-186
OBJECTIVE:
To evaluate the effect of biodegradable magnesium alloy materials in promoting tendon-bone healing during rotator cuff tear repair and to investigate their potential underlying biological mechanisms.
METHODS:
Forty-eight 8-week-old Sprague Dawley rats were taken and randomly divided into groups A, B, and C. Rotator cuff tear models were created and repaired using magnesium alloy sutures in group A and Vicryl Plus 4-0 absorbable sutures in group B, while only subcutaneous incisions and sutures were performed in group C. Organ samples of groups A and B were taken for HE staining at 1 and 2 weeks after operation to evaluate the safety of magnesium alloy, and specimens from the supraspinatus tendon and proximal humerus were harvested at 2, 4, 8, and 12 weeks after operation. The specimens were observed macroscopically at 4 and 12 weeks after operation. Biomechanical tests were performed at 4, 8, and 12 weeks to test the ultimate load and stiffness of the healing sites in groups A and B. At 2, 4, and 12 weeks, the specimens were subjected to the following tests: Micro-CT to evaluate the formation of bone tunnels in groups A and B, HE staining and Masson staining to observe the regeneration of fibrocartilage at the tendon-bone interface after decalcification and sectioning, and Goldner trichrome staining to evaluate the calcification. Immunohistochemical staining was performed to detect the expressions of angiogenic factors, including vascular endothelial growth factor (VEGF) and bone morphogenetic protein 2 (BMP-2), as well as osteogenic factors at the tendon-bone interface. Additionally, immunofluorescence staining was used to examine the expressions of Arginase 1 and Integrin beta-2 to assess M1 and M2 macrophage polarization at the tendon-bone interface. The role of the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) signaling pathway in tendon-bone healing was further analyzed using real-time fluorescence quantitative PCR.
RESULTS:
Analysis of visceral sections revealed that magnesium ions released during the degradation of magnesium alloys did not cause significant toxic effects on organs such as the heart, liver, spleen, lungs, and kidneys, indicating good biosafety. Histological analysis further demonstrated that fibrocartilage regeneration at the tendon-bone interface in group A occurred earlier, and the amount of fibrocartilage was significantly greater compared to group B, suggesting a positive effect of magnesium alloy material on tendon-bone interface repair. Additionally, Micro-CT analysis results revealed that bone tunnel formation occurred more rapidly in group A compared to group B, further supporting the beneficial effect of magnesium alloy on bone healing. Biomechanical testing showed that the ultimate load in group A was consistently higher than in group B, and the stiffness of group A was also greater than that of group B at 4 weeks, indicating stronger tissue-carrying capacity following tendon-bone interface repair and highlighting the potential of magnesium alloy in enhancing tendon-bone healing. Immunohistochemical staining results indicated that the expressions of VEGF and BMP-2 were significantly upregulated during the early stages of healing, suggesting that magnesium alloy effectively promoted angiogenesis and bone formation, thereby accelerating the tendon-bone healing process. Immunofluorescence staining further revealed that magnesium ions exerted significant anti-inflammatory effects by regulating macrophage polarization, promoting their shift toward the M2 phenotype. Real-time fluorescence quantitative PCR results demonstrated that magnesium ions could facilitate tendon-bone healing by modulating the PI3K/AKT signaling pathway.
CONCLUSION
Biodegradable magnesium alloy material accelerated fibrocartilage regeneration and calcification at the tendon-bone interface in rat rotator cuff tear repair by regulating the PI3K/AKT signaling pathway, thereby significantly enhancing tendon-bone healing.
Animals
;
Rotator Cuff Injuries/metabolism*
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Wound Healing/drug effects*
;
Alloys/pharmacology*
;
Rats
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Rotator Cuff/metabolism*
;
Macrophages/metabolism*
;
Magnesium/pharmacology*
;
Phosphatidylinositol 3-Kinases/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Male
;
Biocompatible Materials
;
Bone Morphogenetic Protein 2/metabolism*
3.Effectiveness and safety of augmentative plating technique in managing nonunion following intramedullary nailing of long bones in the lower extremity: A systematic review and meta-analysis.
Cong-Xiao FU ; Hao GAO ; Jun REN ; Hu WANG ; Shuai-Kun LU ; Guo-Liang WANG ; Zhen-Feng ZHU ; Yun-Yan LIU ; Wen LUO ; Yong ZHANG ; Yun-Fei ZHANG
Chinese Journal of Traumatology 2025;28(3):164-174
PURPOSE:
To methodically assess the effectiveness of augmentative plating (AP) and exchange nailing (EN) in managing nonunion following intramedullary nailing for long bone fractures of the lower extremity.
METHODS:
PubMed, EMBASE, Web of Science, and the Cochrane Library were searched to gather clinical studies regarding the use of AP and EN techniques in the treatment of nonunion following intramedullary nailing of lower extremity long bones. The search was conducted up until May 2023. The original studies underwent an independent assessment of their quality, a process conducted utilizing the Newcastle-Ottawa scale. Data were retrieved from these studies, and meta-analysis was executed utilizing Review Manager 5.3.
RESULTS:
This meta-analysis included 8 studies involving 661 participants, with 305 in the AP group and 356 in the EN group. The results of the meta-analysis demonstrated that the AP group exhibited a higher rate of union (odds ratio: 8.61, 95% confidence intervals (CI): 4.12 - 17.99, p < 0.001), shorter union time (standardized mean difference (SMD): -1.08, 95% CI: -1.79 - -0.37, p = 0.003), reduced duration of the surgical procedure (SMD: -0.56, 95% CI: -0.93 - -0.19, p = 0.003), less bleeding (SMD: -1.5, 95% CI: -2.81 - -0.18, p = 0.03), and a lower incidence of complications (relative risk: -0.17, 95% CI: -0.27 - -0.06, p = 0.001). In the subgroup analysis, the time for union in the AP group in nonisthmal and isthmal nonunion of lower extremity long bones was shorter compared to the EN group (nonisthmal SMD: -1.94, 95% CI: -3.28 - -0.61, p < 0.001; isthmal SMD: -1.08, 95% CI: -1.64 - -0.52, p = 0.002).
CONCLUSION
In the treatment of nonunion in diaphyseal fractures of the long bones in the lower extremity, the AP approach is superior to EN, both intraoperatively (with reduced duration of the surgical procedure and diminished blood loss) and postoperatively (with an elevated union rate, shorter union time, and lower incidence of complications). Specifically, in the management of nonunion of lower extremity long bones with non-isthmal and isthmal intramedullary nails, AP demonstrated shorter union time in comparison to EN.
Humans
;
Bone Nails/adverse effects*
;
Bone Plates/adverse effects*
;
Femoral Fractures/surgery*
;
Fracture Fixation, Intramedullary/methods*
;
Fractures, Ununited/surgery*
;
Lower Extremity/injuries*
4.Complications among patients undergoing orthopedic surgery after infection with the SARS-CoV-2 Omicron strain and a preliminary nomogram for predicting patient outcomes.
Liang ZHANG ; Wen-Long GOU ; Ke-Yu LUO ; Jun ZHU ; Yi-Bo GAN ; Xiang YIN ; Jun-Gang PU ; Huai-Jian JIN ; Xian-Qing ZHANG ; Wan-Fei WU ; Zi-Ming WANG ; Yao-Yao LIU ; Yang LI ; Peng LIU
Chinese Journal of Traumatology 2025;28(6):445-453
PURPOSE:
The rate of complications among patients undergoing surgery has increased due to infection with SARS-CoV-2 and other variants of concern. However, Omicron has shown decreased pathogenicity, raising questions about the risk of postoperative complications among patients who are infected with this variant. This study aimed to investigate complications and related factors among patients with recent Omicron infection prior to undergoing orthopedic surgery.
METHODS:
A historical control study was conducted. Data were collected from all patients who underwent surgery during 2 distinct periods: (1) between Dec 12, 2022 and Jan 31, 2023 (COVID-19 positive group), (2) between Dec 12, 2021 and Jan 31, 2022 (COVID-19 negative control group). The patients were at least 18 years old. Patients who received conservative treatment after admission or had high-risk diseases or special circumstances (use of anticoagulants before surgery) were excluded from the study. The study outcomes were the total complication rate and related factors. Binary logistic regression analysis was used to identify related factors, and odds ratio (OR) and 95% confidence interval (CI) were calculated to assess the impact of COVID-19 infection on complications.
RESULTS:
In the analysis, a total of 847 patients who underwent surgery were included, with 275 of these patients testing positive for COVID-19 and 572 testing negative. The COVID-19-positive group had a significantly higher rate of total complications (11.27%) than the control group (4.90%, p < 0.001). After adjusting for relevant factors, the OR was 3.08 (95% CI: 1.45-6.53). Patients who were diagnosed with COVID-19 at 3-4 weeks (OR = 0.20 (95% CI: 0.06-0.59), p = 0.005), 5-6 weeks (OR = 0.16 (95% CI: 0.04-0.59), p = 0.010), or ≥7 weeks (OR = 0.26 (95% CI: 0.06-1.02), p = 0.069) prior to surgery had a lower risk of complications than those who were diagnosed at 0-2 weeks prior to surgery. Seven factors (age, indications for surgery, time of operation, time of COVID-19 diagnosis prior to surgery, C-reactive protein levels, alanine transaminase levels, and aspartate aminotransferase levels) were found to be associated with complications; thus, these factors were used to create a nomogram.
CONCLUSION
Omicron continues to be a significant factor in the incidence of postoperative complications among patients undergoing orthopedic surgery. By identifying the factors associated with these complications, we can determine the optimal surgical timing, provide more accurate prognostic information, and offer appropriate consultation for orthopedic surgery patients who have been infected with Omicron.
Humans
;
COVID-19/complications*
;
Male
;
Female
;
Middle Aged
;
Postoperative Complications/epidemiology*
;
SARS-CoV-2
;
Orthopedic Procedures/adverse effects*
;
Aged
;
Nomograms
;
Adult
;
Retrospective Studies
;
Risk Factors
5.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*
6.A preclinical evaluation and first-in-man case for transcatheter edge-to-edge mitral valve repair using PulveClip® transcatheter repair device.
Gang-Jun ZONG ; Jie-Wen DENG ; Ke-Yu CHEN ; Hua WANG ; Fei-Fei DONG ; Xing-Hua SHAN ; Jia-Feng WANG ; Ni ZHU ; Fei LUO ; Peng-Fei DAI ; Zhi-Fu GUO ; Yong-Wen QIN ; Yuan BAI
Journal of Geriatric Cardiology 2025;22(2):265-269
7.Clinical implication of post-angioplasty quantitative flow ratio in the patients with coronary artery de novo lesions underwent drug-coated balloons treatment.
Yun-Hui ZHU ; Xu-Lin HONG ; Tian-Li HU ; Qian-Qian BIAN ; Yu-Fei CHEN ; Tian-Ping ZHOU ; Jing LI ; Guo-Sheng FU ; Wen-Bin ZHANG
Journal of Geriatric Cardiology 2025;22(3):332-343
BACKGROUND:
Quantitative flow ratio (QFR) holds significant value in guiding drug-coated balloon (DCB) treatment and enhancing outcomes. However, the predictive capability of post-angioplasty QFR for long-term clinical events in patients with de novo lesions who receive DCB treatment remains uncertain. The aim of this study was to explore the potential significance of post-angioplasty QFR measurements in predicting clinical outcomes in patients underwent DCB treatment for de novo lesions.
METHODS:
Patients who underwent DCB-only intervention for de novo lesions were enrolled. QFR was conducted after DCB treatment. The patients were then categorized based on post-angioplasty QFR. The primary endpoint was major adverse cardiac events (MACE), encompassing all-cause death, cardiovascular death, nonfatal myocardial infarction, stroke, and target vessel revascularization.
RESULTS:
A total of 553 patients with 561 lesions were included. The median follow-up period was 505 days, during which 66 (11.8%) MACEs occurred. Based on post-procedural QFR grouping, there were 259 cases in the high QFR group (QFR > 0.93) and 302 cases in the low QFR group (QFR ≤ 0.93). Kaplan-Meier analysis revealed a significantly higher cumulative incidence of MACE in the low QFR group (log-rank P = 0.004). The multivariate Cox proportional hazards model demonstrated a significant inverse correlation between QFR and the occurrence of MACEs (HR = 0.522, 95%CI: 0.289-0.942, P = 0.031). Landmark analysis indicated that high QFR had a significant reducing effect on the cumulative incidence of MACEs within 1 year (log-rank P = 0.016) and 1-5 years (log-rank P = 0.026).
CONCLUSIONS
In patients who underwent DCB-only treatment for de novo lesions, higher post-procedural QFR values (> 0.93) were identified as an independent protective factor against adverse prognosis.
8.Physical Function Characteristics of Elderly Women With Fall Experiences.
Ya-Fei DUAN ; De-Wen JI ; Tao FU ; Zhu-Qing DONG
Acta Academiae Medicinae Sinicae 2025;47(2):182-190
Objective To explore the physical function indicators of elderly women with fall experiences,so as to provide more data reference for fall prevention,risk assessment,and solving of aging-related health problems in elderly women.Methods The fall history of 167 elderly women in communities in Tianjin was investigated by a questionnaire.The participants were assigned into a fall group(more than 2 falls in the last 1 year)and a non-fall group according to the number of falls.Body composition was tested by an Inbody 770 Body Composition Analyzer,and the calcaneus bone mineral density was measured by a UBD2002A Ultrasound Bone Densitometer.The muscle strength and proprioception of knee and ankle joints of lower limbs were measured by a PRIMUS BTE Isokinetic Tester.The muscle strength of lower limbs was evaluated by the number of 30-second sitting-rising.The visual sensitivity was examined by two-contrast near point reading cards(with a small number of strokes).The dynamic and static balance abilities were determined by a Korebalance Tester,and the static balance ability was tested by one-leg standing with eyes closed.The dynamic and static balance was assessed based on the Berg balance scale,and walking gait characteristics were studied by a BTS three-dimensional motion capture system.Results The skeletal muscle content(P<0.001),strength of non-dominant knee flexor muscle(P=0.002),number of 30-second sitting-rising(P=0.006),and average walking speed(P=0.013)in the fall group were lower than those in the non-fall group.The visual acuity at 10% grayscale(P=0.001),active knee joint position sense(P<0.001),strength of non-dominant ankle flexor muscle(P<0.001),and one-leg standing time with eyes closed(P<0.001)in the fall group were lower than those in the non-fall group.The fall group outperformed the non-fall group in right-left balance rate(P=0.031)and forward-backward balance rate(P=0.028)during static and dynamic balance tests.Conclusion The ankle angle,proprioception,muscle strength,and skeletal muscle content of lower limbs,visual sensitivity,dynamic and static balance abilities,and walking ability of elderly women with fall experiences were lower than those without fall experiences.
Humans
;
Accidental Falls
;
Aged
;
Female
;
Postural Balance
;
Muscle Strength
;
Body Composition
;
Bone Density
;
Surveys and Questionnaires
;
Gait
9.Development and prospects of predicting drug polymorphs technology
Mei GUO ; Wen-xing DING ; Bo PENG ; Jin-feng LIU ; Yi-fei SU ; Bin ZHU ; Guo-bin REN
Acta Pharmaceutica Sinica 2024;59(1):76-83
Most chemical medicines have polymorphs. The difference of medicine polymorphs in physicochemical properties directly affects the stability, efficacy, and safety of solid medicine products. Polymorphs is incomparably important to pharmaceutical chemistry, manufacturing, and control. Meantime polymorphs is a key factor for the quality of high-end drug and formulations. Polymorph prediction technology can effectively guide screening of trial experiments, and reduce the risk of missing stable crystal form in the traditional experiment. Polymorph prediction technology was firstly based on theoretical calculations such as quantum mechanics and computational chemistry, and then was developed by the key technology of machine learning using the artificial intelligence. Nowadays, the popular trend is to combine the advantages of theoretical calculation and machine learning to jointly predict crystal structure. Recently, predicting medicine polymorphs has still been a challenging problem. It is expected to learn from and integrate existing technologies to predict medicine polymorphs more accurately and efficiently.
10.Frontiers in in situ Cryo-electron Microscopy and Visual Proteomics
Kuan-Ying LI ; Wen-Xue WANG ; Yun ZHU ; Liang XUE ; Fei SUN
Progress in Biochemistry and Biophysics 2024;51(10):2456-2477
In recent years, with the continuous development of in situ cryo-electron microscopy (cryo-EM) and artificial intelligence (AI) technologies, the research of structural biology has undergone a paradigm shift. Structural analysis is no longer confined to isolated and purified biomolecules, and determination of high-resolution in situ structures directly within cells and tissues becomes feasible. Furthermore, structural analysis of the molecular landscapes of subcellular regions can be performed to gain a deeper understanding of the molecular mechanisms of living activities in the native functional context. Through determining in situ structures of various protein complexes within the cell, it is feasible to visualize the proteome with spatial and quantitative information, which is often referred to as visual proteomics. Emerging in situ structural methods represented by cryo-electron tomography (cryo-ET) hold the promise to elucidate the three-dimensional interaction networks of the intracellular proteome and understand their activities in a systematic manner. To advance in situ cryo-EM/ET and visual proteomics in China, this review summarizes the new research paradigms and technological advances, showcases the superiority of new concepts and technologies with representative examples, and discusses the future prospects in the field.

Result Analysis
Print
Save
E-mail