1.Application of Recombinant Collagen in Biomedicine
Huan HU ; Hong ZHANG ; Jian WANG ; Li-Wen WANG ; Qian LIU ; Ning-Wen CHENG ; Xin-Yue ZHANG ; Yun-Lan LI
Progress in Biochemistry and Biophysics 2025;52(2):395-416
Collagen is a major structural protein in the matrix of animal cells and the most widely distributed and abundant functional protein in mammals. Collagen’s good biocompatibility, biodegradability and biological activity make it a very valuable biomaterial. According to the source of collagen, it can be broadly categorized into two types: one is animal collagen; the other is recombinant collagen. Animal collagen is mainly extracted and purified from animal connective tissues by chemical methods, such as acid, alkali and enzyme methods, etc. Recombinant collagen refers to collagen produced by gene splicing technology, where the amino acid sequence is first designed and improved according to one’s own needs, and the gene sequence of improved recombinant collagen is highly consistent with that of human beings, and then the designed gene sequence is cloned into the appropriate vector, and then transferred to the appropriate expression vector. The designed gene sequence is cloned into a suitable vector, and then transferred to a suitable expression system for full expression, and finally the target protein is obtained by extraction and purification technology. Recombinant collagen has excellent histocompatibility and water solubility, can be directly absorbed by the human body and participate in the construction of collagen, remodeling of the extracellular matrix, cell growth, wound healing and site filling, etc., which has demonstrated significant effects, and has become the focus of the development of modern biomedical materials. This paper firstly elaborates the structure, type, and tissue distribution of human collagen, as well as the associated genetic diseases of different types of collagen, then introduces the specific process of producing animal source collagen and recombinant collagen, explains the advantages of recombinant collagen production method, and then introduces the various systems of expressing recombinant collagen, as well as their advantages and disadvantages, and finally briefly introduces the application of animal collagen, focusing on the use of animal collagen in the development of biopharmaceutical materials. In terms of application, it focuses on the use of animal disease models exploring the application effects of recombinant collagen in wound hemostasis, wound repair, corneal therapy, female pelvic floor dysfunction (FPFD), vaginal atrophy (VA) and vaginal dryness, thin endometritis (TE), chronic endometritis (CE), bone tissue regeneration in vivo, cardiovascular diseases, breast cancer (BC) and anti-aging. The mechanism of action of recombinant collagen in the treatment of FPFD and CE was introduced, and the clinical application and curative effect of recombinant collagen in skin burn, skin wound, dermatitis, acne and menopausal urogenital syndrome (GSM) were summarized. From the exploratory studies and clinical applications, it is evident that recombinant collagen has demonstrated surprising effects in the treatment of all types of diseases, such as reducing inflammation, promoting cell proliferation, migration and adhesion, increasing collagen deposition, and remodeling the extracellular matrix. At the end of the review, the challenges faced by recombinant collagen are summarized: to develop new recombinant collagen types and dosage forms, to explore the mechanism of action of recombinant collagen, and to provide an outlook for the future development and application of recombinant collagen.
2.Saponins from Panax japonicus ameliorate high-fat diet-induced anxiety by modulating FGF21 resistance.
Yan HUANG ; Bo-Wen YUE ; Yue-Qin HU ; Wei-Li LI ; Dian-Mei YU ; Jie XU ; Jin-E WANG ; Zhi-Yong ZHOU
China Journal of Chinese Materia Medica 2025;50(1):29-41
Anxiety disorder is a highly prevalent psychological illness, and research has shown that obesity is a significant risk factor for its development. This study explored the ameliorative effects and mechanisms of saponins from Panax japonicus(SPJ) on anxiety disorder in mice fed a high-fat diet(HFD). Fifty C57BL/6J mice were randomly divided into normal control diet(NCD) group, HFD group, and low-and high-dose SPJ groups. At week 12, six mice from the HFD group were further divided into a control group(treated with DMSO) and an exogenous fibroblast growth factor 21(FGF21) group(administered rFGF21). The anxiety-like behavior of the mice was assessed using the open field test and elevated plus maze test. Hematoxylin-eosin(HE) staining and oil red O staining were performed to observe pathological changes in the liver and adipose tissue. Glucose metabolism was evaluated through the glucose tolerance test(GTT) and insulin tolerance test(ITT). Western blot analysis was performed to detect the expression of FGF21 and its downstream-related proteins in the liver and cortex, along with the expression of brain-derived neurotrophic factor(BDNF), disks large homolog 4(DLG4), and synaptophysin(SYP) in the cortex. Real-time quantitative fluorescent PCR(qPCR) was used to detect the expression of FGF21 and its receptor genes in the liver and cortex. Immunofluorescence staining was employed to examine the expression of neuronal activator c-Fos, FGF21, and the FGF21 co-receptor β-klotho in the cerebral cortex. The results showed that SPJ significantly improved the frequency of activity in the open arms of the elevated plus maze and the central area of the open field in HFD mice, up-regulated the expression of BDNF, DLG4, and SYP, and effectively alleviated anxiety-like behaviors in HFD mice. Compared with the NCD group, HFD mice exhibited up-regulated expression of FGF21 in the liver and cerebral cortex, while the expression of fibroblast growth factor receptor 1(FGFR1) and β-klotho was significantly down-regulated, suggesting that HFD mice exhibited FGF21 resistance. SPJ markedly up-regulated the β-klotho levels in HFD mice, reversing FGF21 resistance. Further comparison with exogenously administered FGF21 revealed that SPJ activates brain cortical regions in a consistent manner, and additionally, SPJ promotes the number and colocalization of c-Fos and β-klotho positive cells in the brain cortex. In summary, SPJ effectively alleviates anxiety-like behaviors in HFD mice. Its mechanism is associated with up-regulation of β-klotho expression in the brain, reversal of FGF21 resistance, and subsequent activation of neurons in the cerebral cortex and amygdala.
Animals
;
Diet, High-Fat/adverse effects*
;
Fibroblast Growth Factors/genetics*
;
Mice
;
Male
;
Panax/chemistry*
;
Mice, Inbred C57BL
;
Anxiety/etiology*
;
Saponins/administration & dosage*
;
Brain-Derived Neurotrophic Factor/genetics*
;
Humans
;
Liver/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
3.Processing technology of calcined Magnetitum based on concept of QbD and its XRD characteristic spectra.
De-Wen ZENG ; Jing-Wei ZHOU ; Tian-Xing HE ; Yu-Mei CHEN ; Huan-Huan XU ; Jian FENG ; Yue YANG ; Xin CHEN ; Jia-Liang ZOU ; Lin CHEN ; Hong-Ping CHEN ; Shi-Lin CHEN ; Yuan HU ; You-Ping LIU
China Journal of Chinese Materia Medica 2025;50(9):2391-2403
Guided by the concept of quality by design(QbD), this study optimizes the calcination and quenching process of calcined Magnetitum and establishes the XRD characteristic spectra of calcined Magnetitum, providing a scientific basis for the formulation of quality standards. Based on the processing methods and quality requirements of Magnetitum in the Chinese Pharmacopoeia, the critical process parameters(CPPs) identified were calcination temperature, calcination time, particle size, laying thickness, and the number of vinegar quenching cycles. The critical quality attributes(CQAs) included Fe mass fraction, Fe~(2+) dissolution, and surface color. The weight coefficients were determined by combining Analytic Hierarchy Process(AHP) and the criteria importance though intercrieria correlation(CRITIC) method, and the calcination process was optimized using orthogonal experimentation. Surface color was selected as a CQA, and based on the principle of color value, the surface color of calcined Magnetitum was objectively quantified. The vinegar quenching process was then optimized to determine the best processing conditions. X-ray diffraction(XRD) was used to establish the characteristic spectra of calcined Magnetitum, and methods such as similarity evaluation, cluster analysis, and orthogonal partial least squares-discriminant analysis(OPLS-DA) were used to evaluate the quality of the spectra. The optimized calcined Magnetitum preparation process was found to be calcination at 750 ℃ for 1 h, with a laying thickness of 4 cm, a particle size of 0.4-0.8 cm, and one vinegar quenching cycle(Magnetitum-vinegar ratio 10∶3), which was stable and feasible. The XRD characteristic spectra analysis method, featuring 9 common peaks as fingerprint information, was established. The average correlation coefficient ranged from 0.839 5-0.988 1, and the average angle cosine ranged from 0.914 4 to 0.995 6, indicating good similarity. Cluster analysis results showed that Magnetitum and calcined Magnetitum could be grouped together, with similar compositions. OPLS-DA discriminant analysis identified three key characteristic peaks, with Fe_2O_3 being the distinguishing component between the two. The final optimized processing method is stable and feasible, and the XRD characteristic spectra of calcined Magnetitum was initially established, providing a reference for subsequent quality control and the formulation of quality standards for calcined Magnetitum.
X-Ray Diffraction/methods*
;
Drugs, Chinese Herbal/chemistry*
;
Quality Control
;
Particle Size
4.Fucoidan sulfate regulates Hmox1-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy.
Yu-Feng CAI ; Wei HU ; Yi-Gang WAN ; Yue TU ; Si-Yi LIU ; Wen-Jie LIU ; Liu-Yun-Xin PAN ; Ke-Jia WU
China Journal of Chinese Materia Medica 2025;50(9):2461-2471
This study explores the role and underlying molecular mechanisms of fucoidan sulfate(FPS) in regulating heme oxygenase-1(Hmox1)-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy(DCM) through in vivo and in vitro experiments and network pharmacology analysis. In vivo, a DCM rat model was established using a combination of "high-fat diet feeding + two low-dose streptozotocin(STZ) intraperitoneal injections". The rats were randomly divided into four groups: normal, model, FPS, and dapagliflozin(Dapa) groups. In vitro, a cellular model was created by inducing rat cardiomyocytes(H9c2 cells) with high glucose(HG), using zinc protoporphyrin(ZnPP), an Hmox1 inhibitor, as the positive control. An automatic biochemical analyzer was used to measure blood glucose(BG), serum aspartate aminotransferase(AST), serum lactate dehydrogenase(LDH), and serum creatine kinase-MB(CK-MB) levels. Echocardiography was used to assess rat cardiac function, including ejection fraction(EF) and fractional shortening(FS). Pathological staining was performed to observe myocardial morphology and fibrotic characteristics. DCFH-DA fluorescence probe was used to detect reactive oxygen species(ROS) levels in myocardial tissue. Specific assay kits were used to measure serum brain natriuretic peptide(BNP), myocardial Fe~(2+), and malondialdehyde(MDA) levels. Western blot(WB) was used to detect the expression levels of myosin heavy chain 7B(MYH7B), natriuretic peptide A(NPPA), collagens type Ⅰ(Col-Ⅰ), α-smooth muscle actin(α-SMA), ferritin heavy chain 1(FTH1), solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), 4-hydroxy-2-nonenal(4-HNE), and Hmox1. Immunohistochemistry(IHC) was used to examine Hmox1 protein expression patterns. FerroOrange and Highly Sensitive DCFH-DA fluorescence probes were used to detect intracellular Fe~(2+) and ROS levels. Transmission electron microscopy was used to observe changes in mitochondrial morphology. In network pharmacology, FPS targets were identified through the PubChem database and PharmMapper platform. DCM-related targets were integrated from OMIM, GeneCards, and DisGeNET databases, while ferroptosis-related targets were obtained from the FerrDb database. A protein-protein interaction(PPI) network was constructed for the intersection of these targets using STRING 11.0, and core targets were screened with Cytoscape 3.9.0. Molecular docking analysis was conducted using AutoDock and PyMOL 2.5. In vivo results showed that FPS significantly reduced AST, LDH, CK-MB, and BNP levels in DCM model rats, improved cardiac function, decreased the expression of myocardial injury proteins(MYH7B, NPPA, Col-Ⅰ, and α-SMA), alleviated myocardial hypertrophy and fibrosis, and reduced Fe~(2+), ROS, and MDA levels in myocardial tissue. Furthermore, FPS regulated the expression of ferroptosis-related markers(Hmox1, FTH1, SLC7A11, GPX4, and 4-HNE) to varying degrees. Network pharmacology results revealed 313 potential targets for FPS, 1 125 targets for DCM, and 14 common targets among FPS, DCM, and FerrDb. Hmox1 was identified as a key target, with FPS showing high docking activity with Hmox1. In vitro results demonstrated that FPS restored the expression levels of ferroptosis-related proteins, reduced intracellular Fe~(2+) and ROS levels, and alleviated mitochondrial structural damage in cardiomyocytes. In conclusion, FPS improves myocardial injury in DCM, with its underlying mechanism potentially involving the regulation of Hmox1 to inhibit ferroptosis. This study provides pharmacological evidence supporting the therapeutic potential of FPS for DCM-induced myocardial injury.
Animals
;
Ferroptosis/drug effects*
;
Rats
;
Diabetic Cardiomyopathies/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Polysaccharides/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Myocytes, Cardiac/metabolism*
;
Myocardium/pathology*
;
Humans
;
Cell Line
;
Heme Oxygenase (Decyclizing)
5.Family socioeconomic status and children's reading fluency: the chain mediating role of family reading environment and children's living and learning styles.
Wen-Xin HU ; Lei ZHANG ; Cai WANG ; Zi-Yue WANG ; Jia-Min XU ; Jing-Yu WANG ; Jia ZHOU ; Wen-Min WANG ; Meng-Meng YAO ; Xia CHI
Chinese Journal of Contemporary Pediatrics 2025;27(4):451-457
OBJECTIVES:
To study the impact of family socioeconomic status on children's reading fluency and the chain mediation effect of family reading environment and children's living and learning styles in this relationship.
METHODS:
A total of 473 children from grades 2 to 6 in two primary schools in Nanjing were selected through stratified random sampling. The children's reading fluency was assessed, and a questionnaire was used to collect information on family socioeconomic status, family reading environment, and children's living and learning styles. The mediation model was established using the Process macro in SPSS, and the Bootstrap method was employed to test the significance of the mediation effects.
RESULTS:
Family socioeconomic status, family reading environment, and children's living and learning styles were significantly positively correlated with reading fluency (P<0.001). The family reading environment and children's living and learning styles mediated the relationship between family socioeconomic status and children's reading fluency. Specifically, the independent mediation effect of family reading environment accounted for 11.02% of the total effect, while the independent mediation effect of children's living and learning styles accounted for 10.79%. The chain mediation effect of family reading environment and children's living and learning styles accounted for 7.41% of the total effect.
CONCLUSIONS
Family socioeconomic status can affect children's reading fluency through three pathways: family reading environment, children's living and learning styles, and the chain mediation effect of family reading environment and children's living and learning styles.
Humans
;
Child
;
Male
;
Female
;
Reading
;
Learning
;
Social Class
;
Family
6.Prognostic Significance of Endothelial Activation and Stress Index in Mantle Cell Lymphoma.
Xin-Yue ZHOU ; Zhi-Qin YANG ; Jin HU ; Feng-Yi LU ; Qian-Nan HAN ; Huan-Huan ZHAO ; Wen-Xia GAO ; Yu-Han MA ; Hu-Jun LI ; Zhen-Yu LI ; Kai-Lin XU ; Wei CHEN
Journal of Experimental Hematology 2025;33(4):1051-1056
OBJECTIVE:
To investigate the predictive value of endothelial activation and stress index (EASIX) for the prognosis of patients with mantle cell lymphoma (MCL).
METHODS:
A retrospective analysis was conducted to assess prognosis and compare the clinical features of patients diagnosed with MCL who were admitted to the Affiliated Hospital of Xuzhou Medical University from January 2010 to June 2023, had therapeutic indications and received standard treatment.
RESULTS:
A total of 66 patients were included and divided into high EASIX group and low EASIX group, according to a cutoff value of 0.97 determined by the receiver operating characteristic (ROC) curve. Multivariate Cox regression analysis showed that prealbumin <0.2 g/L, high EASIX, and ECOG PS score ≥2 were independent risk factors influencing overall survival (OS) in MCL patients. The median OS of patients in the high and low EASIX group was 13.0 and 37.5 months, and the median progression-free survival was 8.8 and 26.0 months, respectively. The proportions of patients with ECOG PS score ≥2 and prealbumin <0.2 g/L at onset significantly increased in the high EASIX group compared to those in the low EASIX group.
CONCLUSION
At the time of initial diagnosis, EASIX can serve as an independent prognostic indicator impacting OS in patients with MCL. Furthermore, patients in the high EASIX group experience a poorer prognosis and shorter survival duration compared with those in the low EASIX group.
Humans
;
Lymphoma, Mantle-Cell/pathology*
;
Prognosis
;
Retrospective Studies
;
Male
;
Female
;
Middle Aged
;
Aged
;
ROC Curve
7.Exploring urban versus rural disparities in atrial fibrillation: prevalence and management trends among elderly Chinese in a screening study.
Wei ZHANG ; Yi CHEN ; Lei-Xiao HU ; Jia-Hui XIA ; Xiao-Fei YE ; Wen-Yuan-Yue WANG ; Xin-Yu WANG ; Quan-Yong XIANG ; Qin TAN ; Xiao-Long WANG ; Xiao-Min YANG ; De-Chao ZHAO ; Xin CHEN ; Yan LI ; Ji-Guang WANG ; FOR THE IMPRESSION INVESTIGATORS AND COORDINATORS
Journal of Geriatric Cardiology 2025;22(2):246-254
BACKGROUND:
Atrial fibrillation (AF) is a common cardiac arrhythmia in the elderly. This study aimed to evaluate urban-rural disparities in its prevalence and management in elderly Chinese.
METHODS:
Consecutive participants aged ≥ 65 years attending outpatient clinics were enrolled for AF screening using handheld single-lead electrocardiogram (ECG) from April 2017 to December 2022. Each ECG rhythm strip was reviewed from the research team. AF or uninterpretable single-lead ECGs were referred for 12-lead ECG. Primary study outcome comparison was between rural and urban areas for the prevalence of AF. The Student's t-test was used to compare mean values of clinical characteristics between rural and urban participants, while the Pearson's chi-square test was used to compare between-group proportions. Multivariate stepwise logistic regression analysis was performed to estimate the association between AF and various patient characteristics.
RESULTS:
The 29,166 study participants included 13,253 men (45.4%) and had a mean age of 72.2 years. The 7073 rural participants differed significantly (P ≤ 0.02) from the 22,093 urban participants in several major characteristics, such as older age, greater body mass index, and so on. The overall prevalence of AF was 4.6% (n = 1347). AF was more prevalent in 7073 rural participants than 22,093 urban participants (5.6% vs. 4.3%, P < 0.01), before and after adjustment for age, body mass index, blood pressure, pulse rate, cigarette smoking, alcohol consumption and prior medical history. Multivariate logistic regression analysis identified overweight/obesity (OR = 1.35, 95% CI: 1.17-1.54) in urban areas and cigarette smoking (OR = 1.62, 95% CI: 1.20-2.17) and alcohol consumption (OR = 1.42, 95% CI: 1.04-1.93) in rural areas as specific risk factors for prevalent AF. In patients with known AF in urban areas (n = 781) and rural areas (n = 338), 60.6% and 45.9%, respectively, received AF treatment (P < 0.01), and only 22.4% and 17.2%, respectively, received anticoagulation therapy (P = 0.05).
CONCLUSIONS
In China, there are urban-rural disparities in AF in the elderly, with a higher prevalence and worse management in rural areas than urban areas. Our study findings provide insight for health policymakers to consider urban-rural disparity in the prevention and treatment of AF.
8.NO-releasing double-crosslinked responsive hydrogels accelerate the treatment and repair of ischemic stroke.
Wen GUO ; Cheng HU ; Yue WANG ; Wen ZHANG ; Shaomin ZHANG ; Jin PENG ; Yunbing WANG ; Jinhui WU
Acta Pharmaceutica Sinica B 2025;15(2):1112-1125
Stroke is a global disease that seriously threatens human life. The pathological mechanisms of ischemic stroke include neuroinflammation, oxidative stress, and the destruction of blood vessels at the lesion site. Here, a biocompatible in situ hydrogel platform was designed to target multiple pathogenic mechanisms post-stroke, including anti-inflammation, anti-oxidant, and promotion of angiogenesis. Double-crosslinked responsive multifunctional hydrogels could quickly respond to the pathological microenvironment of the ischemic damage site and mediate the delivery of nitric oxide (NO) and ISO-1 (inhibitor of macrophage migration inhibitory factor, MIF). The hydrogel demonstrated good biocompatibility and could scavenge reactive oxygen species (ROS) and inflammatory cytokines, such as interleukin-6 (IL-6), interleukin-10 (IL-10), and MIF. In a mouse stroke model, hydrogels, when situated within the microenvironment of cerebral infarction characterized by weak acidity and elevated ROS release, would release anti-inflammatory nanoparticles rapidly that exert an anti-inflammatory effect. Concurrently, NO was sustained release to facilitate angiogenesis and provide neuroprotective effects. Neurological function was significantly improved in treated mice as assessed by the modified neurological severity score, rotarod test, and open field test. These findings indicate that the designed hydrogel held promise for sustained delivery of NO and ISO-1 to alleviate cerebral ischemic injury by responding to the brain's pathological microenvironment.
9.Chromatin landscape alteration uncovers multiple transcriptional circuits during memory CD8+ T-cell differentiation.
Qiao LIU ; Wei DONG ; Rong LIU ; Luming XU ; Ling RAN ; Ziying XIE ; Shun LEI ; Xingxing SU ; Zhengliang YUE ; Dan XIONG ; Lisha WANG ; Shuqiong WEN ; Yan ZHANG ; Jianjun HU ; Chenxi QIN ; Yongchang CHEN ; Bo ZHU ; Xiangyu CHEN ; Xia WU ; Lifan XU ; Qizhao HUANG ; Yingjiao CAO ; Lilin YE ; Zhonghui TANG
Protein & Cell 2025;16(7):575-601
Extensive epigenetic reprogramming involves in memory CD8+ T-cell differentiation. The elaborate epigenetic rewiring underlying the heterogeneous functional states of CD8+ T cells remains hidden. Here, we profile single-cell chromatin accessibility and map enhancer-promoter interactomes to characterize the differentiation trajectory of memory CD8+ T cells. We reveal that under distinct epigenetic regulations, the early activated CD8+ T cells divergently originated for short-lived effector and memory precursor effector cells. We also uncover a defined epigenetic rewiring leading to the conversion from effector memory to central memory cells during memory formation. Additionally, we illustrate chromatin regulatory mechanisms underlying long-lasting versus transient transcription regulation during memory differentiation. Finally, we confirm the essential roles of Sox4 and Nrf2 in developing memory precursor effector and effector memory cells, respectively, and validate cell state-specific enhancers in regulating Il7r using CRISPR-Cas9. Our data pave the way for understanding the mechanism underlying epigenetic memory formation in CD8+ T-cell differentiation.
CD8-Positive T-Lymphocytes/metabolism*
;
Cell Differentiation
;
Chromatin/immunology*
;
Animals
;
Mice
;
Immunologic Memory
;
Epigenesis, Genetic
;
SOXC Transcription Factors/immunology*
;
NF-E2-Related Factor 2/immunology*
;
Mice, Inbred C57BL
;
Gene Regulatory Networks
;
Enhancer Elements, Genetic
10.Combining transformer and 3DCNN models to achieve co-design of structures and sequences of antibodies in a diffusional manner.
Yue HU ; Feng TAO ; Jiajie XU ; Wen-Jun LAN ; Jing ZHANG ; Wei LAN
Journal of Pharmaceutical Analysis 2025;15(6):101267-101267
Image 1.

Result Analysis
Print
Save
E-mail