1.Advances in the role of protein post-translational modifications in circadian rhythm regulation.
Zi-Di ZHAO ; Qi-Miao HU ; Zi-Yi YANG ; Peng-Cheng SUN ; Bo-Wen JING ; Rong-Xi MAN ; Yuan XU ; Ru-Yu YAN ; Si-Yao QU ; Jian-Fei PEI
Acta Physiologica Sinica 2025;77(4):605-626
The circadian clock plays a critical role in regulating various physiological processes, including gene expression, metabolic regulation, immune response, and the sleep-wake cycle in living organisms. Post-translational modifications (PTMs) are crucial regulatory mechanisms to maintain the precise oscillation of the circadian clock. By modulating the stability, activity, cell localization and protein-protein interactions of core clock proteins, PTMs enable these proteins to respond dynamically to environmental and intracellular changes, thereby sustaining the periodic oscillations of the circadian clock. Different types of PTMs exert their effects through distincting molecular mechanisms, collectively ensuring the proper function of the circadian system. This review systematically summarized several major types of PTMs, including phosphorylation, acetylation, ubiquitination, SUMOylation and oxidative modification, and overviewed their roles in regulating the core clock proteins and the associated pathways, with the goals of providing a theoretical foundation for the deeper understanding of clock mechanisms and the treatment of diseases associated with circadian disruption.
Protein Processing, Post-Translational/physiology*
;
Circadian Rhythm/physiology*
;
Humans
;
Animals
;
CLOCK Proteins/physiology*
;
Circadian Clocks/physiology*
;
Phosphorylation
;
Acetylation
;
Ubiquitination
;
Sumoylation
2.Verification of resveratrol ameliorating vascular endothelial damage in sepsis-associated encephalopathy through HIF-1α pathway based on network pharmacology and experiment.
Rong LI ; Yue WU ; Wen-Xuan ZHU ; Meng QIN ; Si-Yu SUN ; Li-Ya WANG ; Mei-Hui TIAN ; Ying YU
China Journal of Chinese Materia Medica 2025;50(4):1087-1097
This study aims to investigate the mechanism by which resveratrol(RES) alleviates cerebral vascular endothelial damage in sepsis-associated encephalopathy(SAE) through network pharmacology and animal experiments. By using network pharmacology, the study identified common targets and genes associated with RES and SAE and constructed a protein-protein interaction( PPI) network. Gene Ontology(GO) analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed to pinpoint key signaling pathways, followed by molecular docking validation. In the animal experiments, a cecum ligation and puncture(CLP) method was employed to induce SAE in mice. The mice were randomly assigned to the sham group, CLP group, and medium-dose and high-dose groups of RES. The sham group underwent open surgery without CLP, and the CLP group received an intraperitoneal injection of 0. 9% sodium chloride solution after surgery. The medium-dose and high-dose groups of RES were injected intraperitoneally with 40 mg·kg-1 and 60 mg·kg~(-1) of RES after modeling, respectively, and samples were collected 12 hours later. Neurological function scores were assessed, and the wet-dry weight ratio of brain tissue was detected. Serum superoxide dismutase(SOD), catalase( CAT) activity, and malondialdehyde( MDA) content were measured by oxidative stress kit. Histopathological changes in brain tissue were examined using hematoxylin-eosin(HE) staining. Transmission electron microscopy was employed to evaluate tight cell junctions and mitochondrial ultrastructure changes in cerebral vascular endothelium. Western blot analysis was performed to detect the expression of zonula occludens1( ZO-1), occludin, claudins-5, optic atrophy 1( OPA1), mitofusin 2(Mfn2), dynamin-related protein 1(Drp1), fission 1(Fis1), and hypoxia-inducible factor-1α(HIF-1α). Network pharmacology identified 76 intersecting targets for RES and SAE, with the top five core targets being EGFR, PTGS2, ESR1, HIF-1α, and APP. GO enrichment analysis showed that RES participated in the SAE mechanism through oxidative stress reaction. KEGG enrichment analysis indicated that RES participated in SAE therapy through HIF-1α, Rap1, and other signaling pathways. Molecular docking results showed favorable docking activity between RES and key targets such as HIF-1α. Animal experiment results demonstrated that compared to the sham group, the CLP group exhibited reduced nervous reflexes, decreased water content in brain tissue, as well as serum SOD and CAT activity, and increased MDA content. In addition, the CLP group exhibited disrupted tight junctions in cerebral vascular endothelium and abnormal mitochondrial morphology. The protein expression levels of Drp1, Fis1, and HIF-1α in brain tissue were increased, while those of ZO-1, occludin, claudin-5, Mfn2, and OPA1 were decreased. In contrast, the medium-dose and high-dose groups of RES showed improved neurological function, increased water content in brain tissue and SOD and CAT activity, and decreased MDA content. Cell morphology in brain tissue, tight junctions between endothelial cells, and mitochondrial structure were improved. The protein expressions of Drp1, Fis1, and HIF-1α were decreased, while those of ZO-1, occludin, claudin-5, Mfn2, and OPA1 were increased. This study suggested that RES could ameliorate cerebrovascular endothelial barrier function and maintain mitochondrial homeostasis by inhibiting oxidative stress after SAE damage, potentially through modulation of the HIF-1α signaling pathway.
Animals
;
Mice
;
Network Pharmacology
;
Resveratrol/administration & dosage*
;
Male
;
Sepsis-Associated Encephalopathy/genetics*
;
Signal Transduction/drug effects*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Endothelium, Vascular/metabolism*
;
Molecular Docking Simulation
;
Protein Interaction Maps/drug effects*
;
Humans
;
Sepsis/complications*
;
Oxidative Stress/drug effects*
3.Postoperative Complications and 30-day Readmission in Patients Older than 80 Years with Chronic Kidney Disease after Hip Fracture.
Hua-Wen ZHANG ; Lu-Lu MA ; Xue-Rong YU
Chinese Medical Sciences Journal 2025;40(3):188-196
OBJECTIVES:
This study aimed to explore the impact of chronic kidney disease (CKD) on prognosis of patients older than 80 years after hip fracture.
METHODS:
This retrospective, observational, single-center study included patients older than 80 years who underwent hip fracture operations between Feburary 2013 to June 2021 at our hospital. Patients were divided into CKD and non-GKD groups based on the estimated glomerular filtration rate (eGFR) < 60 mL/(min·1.73m2)] or not. Outcomes were the incidence of in-hospital postoperative infectious and non-infectious complications, 30-day readmission, and in-hospital death. Logistic regression analysis was used to calculate the odds ratio (OR) of CKD on these outcomes.
RESULTS:
A total of 498 patients were included, 165 in the CKD group and 333 in the non-CKD group. Eighty-seven (52.7%) CKD patients experienced 140 episodes of postoperative complications. In comparison, 114 (34.2%) non-CKD patients had 158 episodes of postoperative complications. CKD patients were more likely to have postoperative complications than non-CKD patients (OR = 2.143, 95% CI: 1.465-3.134, P < 0.001). CKD increased the risk of cardiovascular complications (OR = 2.044, 95% CI: 1.245-3.356, P = 0.004), acute kidney injury (OR = 3.401, 95% CI: 1.905-6.072, P < 0.001), delirium (OR = 2.276, 95% CI: 1.140-4.543, P = 0.024), and gastrointestinal bleeding (OR = 4.151, 95% CI: 1.025-16.812, P = 0.031). The transfusion rate (OR = 2.457, 95% CI: 1.668-3.618, P < 0.001) and incidence of 30-day readmission (OR = 2.426, 95% CI:1.203-4.892, P = 0.011) in CKD patients were significantly higher than those in patients without CKD.
CONCLUSIONS
CKD is associated with poor postoperative outcomes in geriatric hip fracture patients. Special attention should be paid to patients with CKD.
Humans
;
Renal Insufficiency, Chronic/physiopathology*
;
Aged, 80 and over
;
Postoperative Complications/epidemiology*
;
Hip Fractures/complications*
;
Male
;
Female
;
Patient Readmission/statistics & numerical data*
;
Retrospective Studies
;
Glomerular Filtration Rate
4.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*
5.Correlation between Expression Levels of Tim-3, C-myc and Proportion of T Lymphocyte Subsets and Prognosis in Patients with Acute Lymphoblastic Leukemia.
Yu-Chai ZHONG ; Ke-Ding HU ; Yi-Rong JIANG ; Xiao-Wen HUANG
Journal of Experimental Hematology 2025;33(5):1299-1304
OBJECTIVE:
To analyze the correlation between the expression levels of Tim-3, C-myc and the proportion of T lymphocyte subsets and prognosis in patients with acute lymphoblastic leukemia (ALL).
METHODS:
The research group selected 60 ALL patients admitted to our hospital from December 2019 to December 2021, while the control group selected 55 healthy volunteers who underwent physical examination in our hospital. The expression levels of Tim-3, C-myc mRNA and the proportion of T lymphocyte subsets in the two groups were detected. The mortality rate of ALL patients was calculated, and the correlation between the expression levels of Tim-3, C-myc, and the proportion of T lymphocyte subsets and pathological features and prognosis was analyzed.
RESULTS:
Compared with the control group, the levels of Tim-3, C-myc and CD8+ in the research group were increased, while the levels of CD3+ , CD4+ and CD4+ /CD8+ were decreased (all P < 0.001). The levels of Tim-3, C-myc mRNA, CD3+ , CD4+ , CD8+ , CD4+ /CD8+ were correlated with risk classification and extramedullary infiltration (all P < 0.05). The survival rate of patients with low expression of Tim-3, C-myc, and CD8+ was higher than that of patients with high expression, while the survival rate of patients with high expression of CD3+ , CD4+ , and CD4+ /CD8+ was higher than that of patients with low expression (all P < 0.05). Univariate analysis showed that the deceased patients had higher proportions of extramedullary infiltration and high-risk classification, as well as higher levels of Tim-3, C-myc, and CD8+ , while lower levels of CD3+ , CD4+ , and CD4+ /CD8+ compared with surviving patients (all P < 0.01). Multivariate logistic regression analysis showed that extramedullary invasion, risk classification, Tim-3, C-myc, CD3+ , CD4+ , CD8+ , CD4+ /CD8+ were the main factors affecting the prognosis of ALL patients (all P < 0.05). ROC curve analysis showed that the combination of Tim-3, C-myc, and T lymphocyte subsets had higher sensitivity and accuracy in predicting prognosis of ALL patients compared with the single diagnosis of Tim-3, C-myc, CD3+ , CD4+ , CD8+ , and CD4+ /CD8+ (P < 0.05).
CONCLUSION
ALL patients show higher levels of Tim-3, C-myc mRNA and CD8+ but lower levels of CD3+ , CD4+ and CD4+/CD8+. Moreover, the expression levels of Tim-3, C-myc, CD3+ , CD4+ , CD8+ and CD4+/CD8+ are correlated with extramedullary invasion, high-risk classification and prognosis.
Humans
;
Hepatitis A Virus Cellular Receptor 2/metabolism*
;
Prognosis
;
Proto-Oncogene Proteins c-myc/metabolism*
;
Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis*
;
T-Lymphocyte Subsets
;
Male
;
Female
;
Adult
;
Middle Aged
;
Adolescent
;
RNA, Messenger
7.Psychological stress-activated NR3C1/NUPR1 axis promotes ovarian tumor metastasis.
Bin LIU ; Wen-Zhe DENG ; Wen-Hua HU ; Rong-Xi LU ; Qing-Yu ZHANG ; Chen-Feng GAO ; Xiao-Jie HUANG ; Wei-Guo LIAO ; Jin GAO ; Yang LIU ; Hiroshi KURIHARA ; Yi-Fang LI ; Xu-Hui ZHANG ; Yan-Ping WU ; Lei LIANG ; Rong-Rong HE
Acta Pharmaceutica Sinica B 2025;15(6):3149-3162
Ovarian tumor (OT) is the most lethal form of gynecologic malignancy, with minimal improvements in patient outcomes over the past several decades. Metastasis is the leading cause of ovarian cancer-related deaths, yet the underlying mechanisms remain poorly understood. Psychological stress is known to activate the glucocorticoid receptor (NR3C1), a factor associated with poor prognosis in OT patients. However, the precise mechanisms linking NR3C1 signaling and metastasis have yet to be fully elucidated. In this study, we demonstrate that chronic restraint stress accelerates epithelial-mesenchymal transition (EMT) and metastasis in OT through an NR3C1-dependent mechanism involving nuclear protein 1 (NUPR1). Mechanistically, NR3C1 directly regulates the transcription of NUPR1, which in turn increases the expression of snail family transcriptional repressor 2 (SNAI2), a key driver of EMT. Clinically, elevated NR3C1 positively correlates with NUPR1 expression in OT patients, and both are positively associated with poorer prognosis. Overall, our study identified the NR3C1/NUPR1 axis as a critical regulatory pathway in psychological stress-induced OT metastasis, suggesting a potential therapeutic target for intervention in OT metastasis.
8.Enhancement of Ca2+ Signal Strength in Astrocytes in the Lateral Septum Improves Cognitive Disorders in Mice After Hemorrhagic Shock and Resuscitation.
Wen-Guang LI ; Lan-Xin LI ; Rong-Xin SONG ; Xu-Peng WANG ; Shi-Yan JIA ; Xiao-Yi MA ; Jing-Yu ZHANG ; Gang-Feng YIN ; Xiao-Ming LI ; Li-Min ZHANG
Neuroscience Bulletin 2025;41(8):1403-1417
Hemorrhagic shock is a common clinical emergency that can aggravate cell injury after resuscitation. Astrocytes are crucial for the survival of neurons because they regulate the surrounding ionic microenvironment of neurons. Although hemorrhagic shock and resuscitation (HSR) injury can impair cognition, it remains unclear how this insult directly affects astrocytes. In this study, we established an HSR model by bleeding and re-transfusion in mice. The social interaction test and new object recognition test were applied to evaluate post-operative cognitive changes, and the results suggest that mice experience cognitive impairment following exposure to HSR. In the HSR group, the power spectral density of β and γ oscillations decreased, and the coupling of the θ oscillation phase and γ oscillation amplitude was abnormal, which indicated abnormal neuronal oscillation and cognitive impairment after HSR exposure. In brief, cognitive impairment in mice is strongly correlated with Ca2+ signal strength in lateral septum astrocytes following HSR.
Animals
;
Astrocytes/metabolism*
;
Shock, Hemorrhagic/metabolism*
;
Resuscitation/adverse effects*
;
Male
;
Mice
;
Calcium Signaling/physiology*
;
Mice, Inbred C57BL
;
Septal Nuclei/metabolism*
;
Cognitive Dysfunction/etiology*
;
Disease Models, Animal
;
Cognition Disorders/etiology*
9.Research on species identification of commercial medicinal and food homology scented herbal tea
Jing SUN ; Zi-yi HUANG ; Si-qi LI ; Yu-fang LI ; Yan HU ; Shi-wen GUO ; Ge HU ; Chuan-pu SHEN ; Fu-rong YANG ; Yu-lin LIN ; Tian-yi XIN ; Xiang-dong PU
Acta Pharmaceutica Sinica 2024;59(9):2612-2624
The adulteration and counterfeiting of herbal ingredients in medicinal and food homology (MFH) have a serious impact on the quality of herbal materials, thereby endangering human health. Compared to pharmaceutical drugs, health products derived from traditional Chinese medicine (TCM) are more easily accessible and closely integrated into consumers' daily life. However, the authentication of the authenticity of TCM ingredients in MFH has not received sufficient attention. The lack of clear standards emphasizes the necessity of conducting systematic research in this area. This study utilized DNA barcoding technology, combining ITS2,
10.Research Advance of Chinese Medicine in Treating Atherosclerosis: Focus on Lipoprotein-Associated Phospholipase A2.
Lu-Ming WANG ; Wen-Lan ZHANG ; Nuan LYU ; Yan-Rong SUO ; Lin YANG ; Bin YU ; Xi-Juan JIANG
Chinese journal of integrative medicine 2024;30(3):277-288
As a serious cardiovascular disease, atherosclerosis (AS) causes chronic inflammation and oxidative stress in the body and poses a threat to human health. Lipoprotein-associated phospholipase A2 (Lp-PLA2) is a member of the phospholipase A2 (PLA2) family, and its elevated levels have been shown to contribute to AS. Lp-PLA2 is closely related to a variety of lipoproteins, and its role in promoting inflammatory responses and oxidative stress in AS is mainly achieved by hydrolyzing oxidized phosphatidylcholine (oxPC) to produce lysophosphatidylcholine (lysoPC). Moreover, macrophage apoptosis within plaque is promoted by localized Lp-PLA2 which also promotes plaque instability. This paper reviews those researches of Chinese medicine in treating AS via reducing Lp-PLA2 levels to guide future experimental studies and clinical applications related to AS.
Humans
;
1-Alkyl-2-acetylglycerophosphocholine Esterase
;
Medicine, Chinese Traditional
;
Atherosclerosis/drug therapy*
;
Lipoproteins
;
Plaque, Atherosclerotic
;
Biomarkers

Result Analysis
Print
Save
E-mail