1.Clinical practice guidelines for intraoperative cell salvage in patients with malignant tumors
Changtai ZHU ; Ling LI ; Zhiqiang LI ; Xinjian WAN ; Shiyao CHEN ; Jian PAN ; Yi ZHANG ; Xiang REN ; Kun HAN ; Feng ZOU ; Aiqing WEN ; Ruiming RONG ; Rong XIA ; Baohua QIAN ; Xin MA
Chinese Journal of Blood Transfusion 2025;38(2):149-167
Intraoperative cell salvage (IOCS) has been widely applied as an important blood conservation measure in surgical operations. However, there is currently a lack of clinical practice guidelines for the implementation of IOCS in patients with malignant tumors. This report aims to provide clinicians with recommendations on the use of IOCS in patients with malignant tumors based on the review and assessment of the existed evidence. Data were derived from databases such as PubMed, Embase, the Cochrane Library and Wanfang. The guideline development team formulated recommendations based on the quality of evidence, balance of benefits and harms, patient preferences, and health economic assessments. This study constructed seven major clinical questions. The main conclusions of this guideline are as follows: 1) Compared with no perioperative allogeneic blood transfusion (NPABT), perioperative allogeneic blood transfusion (PABT) leads to a more unfavorable prognosis in cancer patients (Recommended); 2) Compared with the transfusion of allogeneic blood or no transfusion, IOCS does not lead to a more unfavorable prognosis in cancer patients (Recommended); 3) The implementation of IOCS in cancer patients is economically feasible (Recommended); 4) Leukocyte depletion filters (LDF) should be used when implementing IOCS in cancer patients (Strongly Recommended); 5) Irradiation treatment of autologous blood to be reinfused can be used when implementing IOCS in cancer patients (Recommended); 6) A careful assessment of the condition of cancer patients (meeting indications and excluding contraindications) should be conducted before implementing IOCS (Strongly Recommended); 7) Informed consent from cancer patients should be obtained when implementing IOCS, with a thorough pre-assessment of the patient's condition and the likelihood of blood loss, adherence to standardized internally audited management procedures, meeting corresponding conditions, and obtaining corresponding qualifications (Recommended). In brief, current evidence indicates that IOCS can be implemented for some malignant tumor patients who need allogeneic blood transfusion after physician full evaluation, and LDF or irradiation should be used during the implementation process.
2.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
3.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
4.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
5.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
6.Discriminating Tumor Deposits From Metastatic Lymph Nodes in Rectal Cancer: A Pilot Study Utilizing Dynamic Contrast-Enhanced MRI
Xue-han WU ; Yu-tao QUE ; Xin-yue YANG ; Zi-qiang WEN ; Yu-ru MA ; Zhi-wen ZHANG ; Quan-meng LIU ; Wen-jie FAN ; Li DING ; Yue-jiao LANG ; Yun-zhu WU ; Jian-peng YUAN ; Shen-ping YU ; Yi-yan LIU ; Yan CHEN
Korean Journal of Radiology 2025;26(5):400-410
Objective:
To evaluate the feasibility of dynamic contrast-enhanced MRI (DCE-MRI) in differentiating tumor deposits (TDs) from metastatic lymph nodes (MLNs) in rectal cancer.
Materials and Methods:
A retrospective analysis was conducted on 70 patients with rectal cancer, including 168 lesions (70 TDs and 98 MLNs confirmed by histopathology), who underwent pretreatment MRI and subsequent surgery between March 2019 and December 2022. The morphological characteristics of TDs and MLNs, along with quantitative parameters derived from DCE-MRI (K trans , kep, and v e) and DWI (ADCmin, ADCmax, and ADCmean), were analyzed and compared between the two groups.Multivariable binary logistic regression and receiver operating characteristic (ROC) curve analyses were performed to assess the diagnostic performance of significant individual quantitative parameters and combined parameters in distinguishing TDs from MLNs.
Results:
All morphological features, including size, shape, border, and signal intensity, as well as all DCE-MRI parameters showed significant differences between TDs and MLNs (all P < 0.05). However, ADC values did not demonstrate significant differences (all P > 0.05). Among the single quantitative parameters, v e had the highest diagnostic accuracy, with an area under the ROC curve (AUC) of 0.772 for distinguishing TDs from MLNs. A multivariable logistic regression model incorporating short axis, border, v e, and ADC mean improved diagnostic performance, achieving an AUC of 0.833 (P = 0.027).
Conclusion
The combination of morphological features, DCE-MRI parameters, and ADC values can effectively aid in the preoperative differentiation of TDs from MLNs in rectal cancer.
7.Adolescent Smoking Addiction Diagnosis Based on TI-GNN
Xu-Wen WANG ; Da-Hua YU ; Ting XUE ; Xiao-Jiao LI ; Zhen-Zhen MAI ; Fang DONG ; Yu-Xin MA ; Juan WANG ; Kai YUAN
Progress in Biochemistry and Biophysics 2025;52(9):2393-2405
ObjectiveTobacco-related diseases remain one of the leading preventable public health challenges worldwide and are among the primary causes of premature death. In recent years, accumulating evidence has supported the classification of nicotine addiction as a chronic brain disease, profoundly affecting both brain structure and function. Despite the urgency, effective diagnostic methods for smoking addiction remain lacking, posing significant challenges for early intervention and treatment. To address this issue and gain deeper insights into the neural mechanisms underlying nicotine dependence, this study proposes a novel graph neural network framework, termed TI-GNN. This model leverages functional magnetic resonance imaging (fMRI) data to identify complex and subtle abnormalities in brain connectivity patterns associated with smoking addiction. MethodsThe study utilizes fMRI data to construct functional connectivity matrices that represent interaction patterns among brain regions. These matrices are interpreted as graphs, where brain regions are nodes and the strength of functional connectivity between them serves as edges. The proposed TI-GNN model integrates a Transformer module to effectively capture global interactions across the entire brain network, enabling a comprehensive understanding of high-level connectivity patterns. Additionally, a spatial attention mechanism is employed to selectively focus on informative inter-regional connections while filtering out irrelevant or noisy features. This design enhances the model’s ability to learn meaningful neural representations crucial for classification tasks. A key innovation of TI-GNN lies in its built-in causal interpretation module, which aims to infer directional and potentially causal relationships among brain regions. This not only improves predictive performance but also enhances model interpretability—an essential attribute for clinical applications. The identification of causal links provides valuable insights into the neuropathological basis of addiction and contributes to the development of biologically plausible and trustworthy diagnostic tools. ResultsExperimental results demonstrate that the TI-GNN model achieves superior classification performance on the smoking addiction dataset, outperforming several state-of-the-art baseline models. Specifically, TI-GNN attains an accuracy of 0.91, an F1-score of 0.91, and a Matthews correlation coefficient (MCC) of 0.83, indicating strong robustness and reliability. Beyond performance metrics, TI-GNN identifies critical abnormal connectivity patterns in several brain regions implicated in addiction. Notably, it highlights dysregulations in the amygdala and the anterior cingulate cortex, consistent with prior clinical and neuroimaging findings. These regions are well known for their roles in emotional regulation, reward processing, and impulse control—functions that are frequently disrupted in nicotine dependence. ConclusionThe TI-GNN framework offers a powerful and interpretable tool for the objective diagnosis of smoking addiction. By integrating advanced graph learning techniques with causal inference capabilities, the model not only achieves high diagnostic accuracy but also elucidates the neurobiological underpinnings of addiction. The identification of specific abnormal brain networks and their causal interactions deepens our understanding of addiction pathophysiology and lays the groundwork for developing targeted intervention strategies and personalized treatment approaches in the future.
8.Research status of quercetin-mediated MAPK signaling pathway in prevention and treatment of osteoporosis
Ke-Xin YUAN ; Xing-Wen XIE ; Ding-Peng LI ; Yi-Sheng JING ; Wei-Wei HUANG ; Xue-Tao WANG ; Hao-Dong YANG ; Wen YAN ; Yong-Wu MA
The Chinese Journal of Clinical Pharmacology 2024;40(9):1375-1379
Quercetin can mediate the activation of mitogen-activated protein kinase(MAPK)signaling pathways to prevent osteoporosis(OP).This paper comprehensively discusses the interrelationship between MAPK and osteoporosis-related cells based on the latest domestic and international research.Additionally,it elucidates the research progress of quercetin in mediating the MAPK signaling pathway for OP prevention.The aim is to provide an effective foundation for the clinical prevention and treatment of OP and the in-depth development of quercetin.
9.Advances in research on mechanisms related to myocardial regeneration in neonatal murine
Mengqi CHEN ; Tingting LIU ; Fangling SUN ; Xin TIAN ; Wenrong ZHENG ; Zixin ZHU ; Yufeng WANG ; Liansu MA ; Wen WANG
Chinese Journal of Comparative Medicine 2024;34(2):144-153
Cardiovascular disease is a health hazard to humans and systolic heart failure due to myocardial infarction is a major cause of death.It was previously thought that myocardial cells of the adult mammalian heart possess a limited ability to proliferate and self-renew.However,it has been widely reported that mammals have the ability to regenerate the myocardium,which is restricted to early postnatal life,and that it is strong enough to repair damaged heart tissue.The discovery of myocardial regeneration in neonatal hearts has provided an ideal animal model to investigate the mechanisms that affect myocardial regeneration,and many mechanisms that reverse myocardial cell cycle arrest and promote myocardial regeneration have been revealed.In this article,we review the factors affecting gene expression for myocardial regeneration(e.g.,ncRNAs and transcription factors),myocardial regeneration-related signaling pathways,and the regulation of myocardial regeneration by non-myocardial cells(e.g.,extracellular matrix,immune response,and epicardium)to provide directions for achieving myocardial regeneration after myocardial injury in adult mammals.
10.Determination of Isobutyl Chloroformate Residue in Agatroban by Derivatization-Gas Chromatography-Mass Spectrometry
Chong QIAN ; Bo-Kai MA ; Chuang NIU ; Shan-Shan LIU ; Wen-Wen HUANG ; Xin-Lei GOU ; Wei WANG ; Mei ZHANG ; Xue-Li CAO
Chinese Journal of Analytical Chemistry 2024;52(1):113-120
A derivatizaton method combined with gas chromatography-mass spectrometry(GC-MS)was established for detection of isobutyl chloroformate(IBCF)residue in active pharmaceutical ingredient of agatroban.The extraction and derivatization reagents,derivatization time,qualitative and quantitative ions were selected and optimized,respectively.The possible mechanism of derivatization and characteristic fragment ions fragmentation were speculated.The agatroban samples were dissolved and extracted by methanol,and the residual IBCF was derived with methanol to generate methyl isobutyl carbonate(MIBCB).After 24 h static derivatization at room temperature,IBCF was completely transformed into MIBCB,which could be used to indirectly detect IBCF accurately.The results showed that the linearity of this method was good in the range of 25-500 ng/mL(R2=0.9999).The limit of detection(LOD,S/N=3)was 0.75 μg/g,and the limit of quantification(LOQ,S/N=10)was 2.50 μg/g.Good recoveries(95.2%-97.8%)and relative standard deviations(RSDs)less than 3.1%(n=6)were obtained from agatroban samples at three spiked levels of IBCF(2.50,25.00,50.00 μg/g),which showed good accuracy of this method.Good precision of detection results was obtained by different laboratory technicians at different times,the mean value of spiked sample solution(25.00 μg/g)was 24.28 μg/g,and the RSD was 2.1%(n=12).The durability was good,minor changes of detection conditions had little effect on the results.Under the original condition and conditions with initial column temperature±5℃,heating rate±2℃/min,column flow rate±0.1 mL/min,the IBCF content of spiked sample solution(25.00 μg/g)was detected,the mean value of detection results was 24.16 μg/g,and the RSD was 2.2%(n=7).Eight batches of agatroban samples from two manufacturers were detected using the established method,and the results showed that no IBCF residue was detected in any of these samples.The agatroban samples could be dissolved by methanol,and then the IBCF residue could be simultaneously extracted and derived with methanol as well.This detection method had the advantages of simple operation,high sensitivity,low matrix effect and accurate quantification,which provided a new effective method for detection of IBCF residue in agatroban.

Result Analysis
Print
Save
E-mail