1.Effect and mechanism of Liujunzi Pills on gut microbiota of rats with spleen Qi deficiency syndrome.
Tao ZHANG ; Nian CHEN ; Qin-Yao JIA ; Xiao-Xia LEI ; Jie WANG ; Jia-Qing ZHAO ; Ying WEI ; Jing WEN
China Journal of Chinese Materia Medica 2025;50(15):4333-4341
This article aims to explore the effect and mechanism of Liujunzi Pills on the intestinal microbiota of rats with spleen Qi deficiency syndrome. The raw Rhei Radix et Rhizoma water extract(1 g·mL~(-1)) was used to prepare spleen Qi deficiency rat models. A total of 44 SD male rats were randomly divided into a control group, a model group, Liujunzi Pills groups at high(3.24 g·kg~(-1)), medium(1.62 g·kg~(-1)), low(0.81 g·kg~(-1)) doses, and Shenling Baizhu San(2.50 g·kg~(-1)) group. The drug effect was evaluated by observing the following aspects: spleen index, fecal water content, body weight, and intestinal propulsion index. Gut microbiota analysis and 16S rRNA gene sequencing were conducted on feces. Enzyme-linked immunosorbent assay(ELISA) and UV spectrophotometry were used to detect interleukin-1β(IL-1β) and adenosine triphosphate(ATP) levels in small intestine tissues. Hematoxylin-eosin staining and transmission electron microscopy were employed to observe changes in intestinal pathology and microstructure. The results show that, compared with the control group, fecal moisture content is significantly increased while spleen index, body weight, and intestinal propulsion index are significantly reduced in rats of the model group, indicating the successful establishment of the model. The above symptoms can be improved by both Shenling Baizhu San and Liujunzi Pills. Compared with the control group, in the model group, the gut microbiota abundance is changed with an unbalanced development: the abundance of beneficial bacteria within the Bacteroidetes phylum is reduced, accompanied by a significantly decreased Shannon index, and reduced signal levels of nicotinamide adenine dinucleotide phosphate(NADPH)-related enzymes relevant to mitochondria. However, Liujunzi Pills and Shenling Baizhu San can significantly improve the Bacteroidetes phylum abundance in gut microbiota, microbial diversity, and NADPH activity in the model group. Additionally, compared with the control group, the ATP level is decreased and the IL-1β level is increased in small intestinal tissues of the model group, with shorter small intestinal epithelial villi and decreased mitochondrial number. The above symptoms can be improved by Liujunzi Pills and Shenling Baizhu San. In conclusion, Liujunzi Pills can treat spleen Qi deficiency syndrome by enhancing mitochondrial function to regulate gut microbiota balance and diversity.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Male
;
Rats, Sprague-Dawley
;
Rats
;
Qi
;
Spleen/metabolism*
;
Splenic Diseases/metabolism*
;
Humans
;
Interleukin-1beta/genetics*
;
Bacteria/drug effects*
;
Feces/microbiology*
;
Adenosine Triphosphate/metabolism*
2.Safety, dosimetry, and efficacy of an optimized long-acting somatostatin analog for peptide receptor radionuclide therapy in metastatic neuroendocrine tumors: From preclinical testing to first-in-human study.
Wei GUO ; Xuejun WEN ; Yuhang CHEN ; Tianzhi ZHAO ; Jia LIU ; Yucen TAO ; Hao FU ; Hongjian WANG ; Weizhi XU ; Yizhen PANG ; Liang ZHAO ; Jingxiong HUANG ; Pengfei XU ; Zhide GUO ; Weibing MIAO ; Jingjing ZHANG ; Xiaoyuan CHEN ; Haojun CHEN
Acta Pharmaceutica Sinica B 2025;15(2):707-721
Peptide receptor radionuclide therapy (PRRT) with radiolabeled SSTR2 agonists is a treatment option that is highly effective in controlling metastatic and progressive neuroendocrine tumors (NETs). Previous studies have shown that an SSTR2 agonist combined with albumin binding moiety Evans blue (denoted as 177Lu-EB-TATE) is characterized by a higher tumor uptake and residence time in preclinical models and in patients with metastatic NETs. This study aimed to enhance the in vivo stability, pharmacokinetics, and pharmacodynamics of 177Lu-EB-TATE by replacing the maleimide-thiol group with a polyethylene glycol chain, resulting in a novel EB conjugated SSTR2-targeting radiopharmaceutical, 177Lu-LNC1010, for PRRT. In preclinical studies, 177Lu-LNC1010 exhibited good stability and SSTR2-binding affinity in AR42J tumor cells and enhanced uptake and prolonged retention in AR42J tumor xenografts. Thereafter, we presented the first-in-human dose escalation study of 177Lu-LNC1010 in patients with advanced/metastatic NETs. 177Lu-LNC1010 was well-tolerated by all patients, with minor adverse effects, and exhibited significant uptake and prolonged retention in tumor lesions, with higher tumor radiation doses than those of 177Lu-EB-TATE. Preliminary PRRT efficacy results showed an 83% disease control rate and a 42% overall response rate after two 177Lu-LNC1010 treatment cycles. These encouraging findings warrant further investigations through multicenter, prospective, and randomized controlled trials.
3.Validation and Reproducibility of an Iodine-specific Food Frequency Questionnaire for Evaluating Dietary Iodine Intake in the Elderly Population of Gansu Province, China.
Qi JIN ; Tao WANG ; Mei Na JI ; Ji Zun WANG ; Xing MA ; Xin Yi WANG ; Jia Qi WANG ; He Xi ZHANG ; Yan Ling WANG ; Wen Xing GUO ; Wan Qi ZHANG
Biomedical and Environmental Sciences 2025;38(9):1168-1172
4.Development of a High-throughput Sequencing Platform for Detection of Viral Encephalitis Pathogens Based on Amplicon Sequencing
Li Ya ZHANG ; Zhe Wen SU ; Chen Rui WANG ; Yan LI ; Feng Jun ZHANG ; Hui Sheng LIU ; He Dan HU ; Xiao Chong XU ; Yu Jia YIN ; Kai Qi YIN ; Ying HE ; Fan LI ; Hong Shi FU ; Kai NIE ; Dong Guo LIANG ; Yong TAO ; Tao Song XU ; Feng Chao MA ; Yu Huan WANG
Biomedical and Environmental Sciences 2024;37(3):294-302
Objective Viral encephalitis is an infectious disease severely affecting human health.It is caused by a wide variety of viral pathogens,including herpes viruses,flaviviruses,enteroviruses,and other viruses.The laboratory diagnosis of viral encephalitis is a worldwide challenge.Recently,high-throughput sequencing technology has provided new tools for diagnosing central nervous system infections.Thus,In this study,we established a multipathogen detection platform for viral encephalitis based on amplicon sequencing. Methods We designed nine pairs of specific polymerase chain reaction(PCR)primers for the 12 viruses by reviewing the relevant literature.The detection ability of the primers was verified by software simulation and the detection of known positive samples.Amplicon sequencing was used to validate the samples,and consistency was compared with Sanger sequencing. Results The results showed that the target sequences of various pathogens were obtained at a coverage depth level greater than 20×,and the sequence lengths were consistent with the sizes of the predicted amplicons.The sequences were verified using the National Center for Biotechnology Information BLAST,and all results were consistent with the results of Sanger sequencing. Conclusion Amplicon-based high-throughput sequencing technology is feasible as a supplementary method for the pathogenic detection of viral encephalitis.It is also a useful tool for the high-volume screening of clinical samples.
5.Molecular mechanism of sulforaphane promoting the differentiation of bone marrow stem cells into osteoblasts
Zheng ZHANG ; Jia-Wen HAN ; Long-Long PENG ; Tao NIE ; San-Ming ZOU ; Yu-Bo ZHANG
Journal of Regional Anatomy and Operative Surgery 2024;33(1):24-29
Objective To investigate the molecular mechanism of sulforaphane(Sul)promoting bone marrow stem cells(BMSCs)differentiating into osteoblasts.Methods BMSCs were divided into the control group(without any treatment),induction group(induction of osteogenic differentiation),and induction+Sul group(induction of osteogenic differentiation with the addition of 40 μmol/L of Sul).The adenovirus-shRNA-Mock,-shRNA-TET1,-shRNA-TET2,and-shRNA-TET3 were transfected into BMSCs as the shRNA-Mock group,shRNA-TET1 group,shRNA-TET2 group,and shRNA-TET3 group.BMSCs were cultured in cell culture medium containing osteogenic differentiation induction medium and 40 μmol/L of Sul,and then transfected with adenovirus-shRNA-TET1,-shRNA-TET2,-shRNA-TET3,and-shRNA-Mock as the induction+Sul+shRNA-TET1 group,induction+Sul+shRNA-TET2 group,induction+Sul+shRNA-TET3 group,and induction +Sul+shRNA-Mock group.The mRNA and protein expression levels of Runx2 after BMSCs differentiated into osteoblasts were determined by qPCR and Western blot.The DNA content of Runx2 promoter region bound to Histone H3 after BMSCs differentiated into osteoblasts was determined by chromatin immunocoprecipitation(ChIP).The methylation level of Runx2 promoter region of BMSCs differentiated into osteoblasts was determined by HpaⅡenzyme and MspⅠenzyme digestion combined with qPCR.The degree of BMSCs differentiated into osteoblasts was determined by alizarin red staining.Results Compared with the induction group,the mRNA and protein expression levels of Runx2 in the induction+Sul group were significantly increased(P<0.05);the content of DNA in the Runx2 promoter region bound to Histone H3 was increased(P<0.05),the methylation level of Runx2 promoter region was reduced(P<0.05),and the alizarin red staining score was elevated(P<0.05).Compared with the induction+Sul group,the content of DNA in the Runx2 promoter region bound to Histone H3 in the induction+Sul+shRNA-TET1 group was decreased(P<0.05),the methylation level of Runx2 promoter region was increased(P<0.05),and the alizarin red staining score was decreased(P<0.05).While there was no significant change among the induction+Sul+shRNA-TET2 group,induction+Sul+shRNA-TET3 group,induction+Sul+shRNA-Mock group(P>0.05).Conclusion Sul can promote the differentiation of BMSCs into osteoblasts through promoting DNA demethylation of Runx2 promoter region by TET1.
6.Metabonomic study of blood of mice with high-voltage electrical injury
Si-Yu CHEN ; Hui WANG ; Yan LUO ; Jia-Wen TAO ; Wen-Juan ZHANG ; Yang YUE ; Zheng-Ping YU ; Hui-Feng PI
Journal of Regional Anatomy and Operative Surgery 2024;33(2):100-106
Objective To explore the changes of metabonomics in blood of mice after high-voltage electric shock,then screen out the significantly changed differential metabolites and metabolic pathways.Methods The head of C57BL/6J mice was subjected to high-voltage electric shock(electric shock group)or exposed to acoustic and optical stimulation of high-voltage electric(control group),then the whole blood from mice were collected to separate serum.The dual platform combined metabonomic analysis based on gas chromatography-mass spectrometer(GC-MS)and liquid chromatography-mass spectrometer(LC-MS)was performed and orthogonal partial least squares discriminant analysis(OPLS-DA)was used to screen the differential metabolites and related metabolic pathways.Results A total of 415 differential metabolites were screened out in metabonomics in blood of mice after high-voltage electric shock,including 187 up-regulated and 228 down-regulated metabolites.These differentially metabolites were significantly enriched in metabolic pathways including central carbon metabolism in cancer,glucagon signaling pathway,etc.Conclusion By establishing the model of high-voltage electrical injury on experimental mice,this study reveals the significant change of metabolite content and metabolic pathway in blood by high-voltage electrical injury.Which provides a basis for the damage of blood metabolic activity by high-voltage electrical injury,and suggests the potential harm of high-voltage electrical injury to blood metabolic activity in the whole body.
7.Application of Functionalized Liposomes in The Delivery of Natural Products
Cheng-Yun WANG ; Xin-Yue LAN ; Jia-Xuan GU ; Xin-Ru GAO ; Long-Jiao ZHU ; Jun LI ; Bing FANG ; Wen-Tao XU ; Hong-Tao TIAN
Progress in Biochemistry and Biophysics 2024;51(11):2947-2959
Plant natural products have a wide range of pharmacological properties, not only can they be used as plant dietary supplements to meet the nutritional needs of the human body in the accelerated pace of life, but also occupy an important position in the research and development of therapeutic drugs for the treatment of tumors, inflammation and other diseases, and have been widely accepted by the public due to their good safety. However, despite the above advantages of plant natural products, limiting factors such as low solubility, poor stability, lack of targeting, high toxicity and side effects, and unacceptable odor have greatly impeded their conversion to clinical applications. Therefore, the development of new avenues for the application of new natural products has become an urgent problem to be solved at present. In recent years, with the continuous development of research, various strategies have been developed to improve the bioavailability of natural products. Among them, nanocarrier delivery system is one of the most attractive strategies at present. In past studies, a large number of nanomaterials (organic, inorganic, etc.) have been developed to encapsulate plant-derived natural products for their efficient delivery to specific organs and cells. Up to now, nanotechnology has not only been limited to pharmaceutical applications, but is also competing in the fields of nanofood processing technology and nanoemulsions. Among the various nanocarriers, liposomes are the largest nanocarriers with the largest market share at present. Liposomes are bilayer nanovesicles synthesized from amphiphilic substances, which have advantages such as high drug loading capacity and stability. Attractively, the flexible surface of liposomes can be modified with various functional elements. Functionalized modification of liposomes with different functional elements such as antibodies, nucleic acids, peptides, and stimuli-responsive moieties can bring out the excellent drug delivery function of liposomes to a greater extent. For example, the modification of functional elements with targeting function such as nucleic acids and antibodies on the surface of liposomes can deliver natural products to the target location and improve the bioavailability of drugs; the modification of stimulus-responsive groups such as photosensitizers, magnetic nanoparticles, pH-responsive groups, and temperature sensitizers on the surface of liposomes can achieve controlled release of drugs, localized targeting, and synergistic thermotherapy. In addition to the above properties, by using functionalized liposomes to encapsulate natural products with irritating properties can also effectively mask the irritating properties of natural products, improve public acceptance, and increase the possibility of application of irritating natural products. There are various strategies for modifying liposomes with functional elements, and the properties of functionalized liposomes constructed by different construction strategies differ. The commonly used construction strategies for functionalized liposomes include covalent modification and non-covalent modification. These two types of construction strategies have their own advantages and disadvantages. Covalent modification has better stability than non-covalent modification, but its operation is cumbersome. With the above background, this review focuses on the three typical problems faced by plant natural products at present, and summarizes the specific applications of functionalized liposomes in them. In addition, this paper summarizes the construction strategies for building different types of functionalized liposomes. Finally, this paper will also review the opportunities and challenges faced by functionalized liposomes to enter clinical therapy, and explore the opportunities to overcome these problems, with a view to better realizing the precise control of plant nanomedicines, and providing ideas and inspirations for researchers in related fields as well as relevant industrial staff.
8.Clinical effects of percutaneous elastic intramedullary nail assisted by arthrography for the treatment of radial neck fractures in children
Hui-Min ZHOU ; Yi-Wen XU ; Chun-Jie TAO ; Jiang-Rong FAN ; Jing-Yang YOU ; Jia-Cheng RUAN ; Si-Qi SHEN ; Zhen WANG ; Yong ZHENG
China Journal of Orthopaedics and Traumatology 2024;37(9):899-904
Objective To explore clinical effect of closed reduction percutaneous elastic intramedullary nail assisted by arthrography in the treatment of radial neck fracture in children.Methods A retrospective analysis was performed on 23 chil-dren with radial neck fracture treated with arthrography assisted closed reduction and percutaneous elastic intramedullary nail internal fixation(arthrography with elastic nail group)from January 2019 to December 2022,including 12 males and 11 fe-males,aged from 2 to 12 years old with an average of(7.36±1.89)years old;According to Judet fracture types,14 children were type Ⅲ and 9 children were type Ⅳ.In addition,23 children with radial neck fracture were selected from January 2015 to December 2018 who were treated with closed reduction and percutaneous elastic intramedullary nail fixation(elastic nail group),including 11 males and 12 females,aged from 2 to 14 years old with an average of(7.50±1.91)years old;Judet classi-fication included 15 children were type Ⅲ and 8 children were type Ⅳ.Operative time and intraoperative fluoroscopy times were compared between two groups.Metaizeau evaluation criteria was used to evaluate fracture reduction,and Tibone-Stoltz evaluation criteria was used to evaluate functional recovery of elbow between two groups.Results Both groups were followed up for 12 to 24 months with an average of(16.56±6.34)months.Operative time and intraoperative fluoroscopy times of elastic nail group were(56.64±19.27)min and(21.13±7.87)times,while those of joint angiography with elastic nail group were(40.33±1 1.50)min and(12.10±3.52)times;there were difference between two groups(P<0.05).According to Metaizeau evaluation,11 patients got excellent result,9 good and 3 fair in joint angiography with elastic nail group,while in elastic nail group,5 ex-cellent,13 good,4 acceptable,and 1 poor;the difference between two groups was statistically significant(P<0.05).According to Tibone-Stoltz criteria,14 patients got excellent result,8 good,and 1 fair in joint arthrography with elastic nail group;while in elastic nail group,12 patients got excellent result,9 good,1 fair and 1 poor;there was no significant difference between two groups(P>0.05).Conclusion Compared to percutaneous elastic intramedullary nail fixation,closed reduction assisted by arthrography has advantages of reduced operation time,decreased intraoperative fluoroscopy frequency,and improved fracture reduction.Arthrography enables clear visualization of the anatomical structures of radius,head,neck,bone,and cartilage in children,facilitating comprehensive display of fracture reduction and brachioradial joint alignment.This technique more pre-cisely guides the depth of elastic intramedullary nail implantation in radius neck,thereby enhancing surgical efficiency and success rate.
9.Long non-coding RNA PART1 Inhibits Proliferation and Invasion of Laryngeal Squamous Carcinoma Cells
Hao WU ; Wen-Tao ZHANG ; Feng-Feng JIA ; Ming LIU ; Jian-Jun ZHU
Chinese Journal of Biochemistry and Molecular Biology 2024;40(7):976-986
Long non-coding RNA(lncRNA)PART1,a competing endogenous RNA(ceRNA),plays a crucial role in the occurrence and development of various tumors.However,research on PART1 in laryngeal squamous cell carcinoma(LSCC)remains scarce.Based on preliminary lncRNA sequencing data,we found that PART1 was sig-nificantly downregulated in LSCC tissues.Further analysis of sequencing and clinical data from public databases such as TCGA revealed 146 differentially expressed lncRNAs(95 upregulated and 51 downregulated)and 2 424 differentially expressed mRNAs when comparing LSCC tumor and adjacent tissues.The results showed that PART1 was generally downregulated in LSCC(P<0.0001),and patients with high PART1 expression had significantly better prognosis(P<0.05).We used bioinformatics methods to construct the ceRNA regulatory network of PART1 in LSCC and identified the miRNAs and mRNAs interacting with it.Under laboratory conditions,the im-portance of PART1 in LSCC cells was validated in vitro.Overexpression vectors significantly increased the expres-sion of PART1 in LSCC cells(P<0.001).Experiments including 5-ethynyl-2'-deoxyuridine staining,apoptosis analysis,scratch healing assay,Transwell assay,and phalloidin staining showed that overexpression of PART1 sig-nificantly affected the proliferation,apoptosis,migration,and invasion of LSCC cells in vitro(P<0.001).There-fore,PART1 may suppress the occurrence and development of LSCC.This study provides a theoretical basis for e-lucidating the role of PART1 in LSCC.
10.Small molecule deoxynyboquinone triggers alkylation and ubiquitination of Keap1 at Cys489 on Kelch domain for Nrf2 activation and inflammatory therapy
Linghu KE-GANG ; Zhang TIAN ; Zhang GUANG-TAO ; Lv PENG ; Zhang WEN-JUN ; Zhao GUAN-DING ; Xiong SHI-HANG ; Ma QIU-SHUO ; Zhao MING-MING ; Chen MEIWAN ; Hu YUAN-JIA ; Zhang CHANG-SHENG ; Yu HUA
Journal of Pharmaceutical Analysis 2024;14(3):401-415
Activation of nuclear factor erythroid 2-related factor 2(Nrf2)by Kelch-like ECH-associated protein 1(Keap1)alkylation plays a central role in anti-inflammatory therapy.However,activators of Nrf2 through alkylation of Keap1-Kelch domain have not been identified.Deoxynyboquinone(DNQ)is a natural small molecule discovered from marine actinomycetes.The current study was designed to investigate the anti-inflammatory effects and molecular mechanisms of DNQ via alkylation of Keap1.DNQ exhibited signif-icant anti-inflammatory properties both in vitro and in vivo.The pharmacophore responsible for the anti-inflammatory properties of DNQ was determined to be the α,β-unsaturated amides moieties by a chemical reaction between DNQ and N-acetylcysteine.DNQ exerted anti-inflammatory effects through activation of Nrf2/ARE pathway.Keap1 was demonstrated to be the direct target of DNQ and bound with DNQ through conjugate addition reaction involving alkylation.The specific alkylation site of DNQ on Keap1 for Nrf2 activation was elucidated with a synthesized probe in conjunction with liquid chromatography-tandem mass spectrometry.DNQ triggered the ubiquitination and subsequent degra-dation of Keap1 by alkylation of the cysteine residue 489(Cys489)on Keap1-Kelch domain,ultimately enabling the activation of Nrf2.Our findings revealed that DNQ exhibited potent anti-inflammatory capacity through α,β-unsaturated amides moieties active group which specifically activated Nrf2 signal pathway via alkylation/ubiquitination of Keap1-Kelch domain,suggesting the potential values of targeting Cys489 on Keap1-Kelch domain by DNQ-like small molecules in inflammatory therapies.

Result Analysis
Print
Save
E-mail