1.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
2.Traditional Chinese Medicine Regulates Metabolic Reprogramming to Treat Lung Cancer: A Review
Xiaoli WEN ; Fangyan CAI ; Ling LIU ; Si SHAN ; Xiang ZHANG ; Hongning LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):269-279
Lung cancer has the highest morbidity and mortality rate among all cancers. Because of the complex pathogenesis, there are limitations in the common Western medicine treatment methods. Clinical and experimental studies have proved that traditional Chinese medicine (TCM) can not only effectively treat lung cancer and alleviate the clinical symptoms of cancer patients but also reduce the adverse reactions and complications caused by surgery, chemotherapy, and radiotherapy to improve the quality of life of the patients. The biological behaviors of lung cancer cells, such as proliferation, invasion, and metastasis, are closely related to their metabolic reprogramming. Metabolic reprogramming in lung cancer involves a series of metabolic changes such as increased glucose uptake and consumption, enhanced glycolysis, increased amino acid uptake and catabolism, and enhanced lipid and protein synthesis. Studies have reported that TCM active components, extracts, and compound prescriptions can effectively inhibit the biological behaviors of lung cancer by regulating metabolic reprogramming. Therefore, this paper reviews the pharmacological mechanisms of TCM active components, extracts, and compound prescriptions in regulating metabolic reprogramming of lung cancer, with the aim of providing a new way of thinking for the treatment of lung cancer by TCM regulation of metabolic reprogramming of lung cancer cells. The available studies suggest that TCM mainly inhibits the extracellular signal-regulated protein kinase (ERK)/c-Myc, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-α (HIF-1α) pathways. Furthermore, the expression of monocarboxylate transporter 4 (MCT4), glucose transporter 1 (GLUT1), pyruvate dehydrogenase (PDH), phosphofructokinase 1 (PFK1), pyruvate dehydrogenase kinase 1 (PDK1), pyruvate kinase M2 (PKM2), hexokinase (HK), lactate dehydrogenase (LDH), and lactate dehydrogenase A (LDHA) are inhibited. In this way, TCM inhibits the glucose uptake by lung cancer cells and glycolysis in lung cancer cells to reduce the energy metabolism of tumor cells, ultimately achieving the therapeutic effect on lung cancer.
3.Identification of GSK3 family and regulatory effects of brassinolide on growth and development of Nardostachys jatamansi.
Yu-Yan LEI ; Zheng MA ; Jing WEI ; Wen-Bing LI ; Ying LI ; Zheng-Ming YANG ; Shao-Shan ZHANG ; Jing-Qiu FENG ; Hua-Chun SHENG ; Yuan LIU
China Journal of Chinese Materia Medica 2025;50(2):395-403
This study identified 8 members including NjBIN2 of the GSK3 family in Nardostachys jatamansi by bioinformatics analysis. Moreover, the phylogenetic tree revealed that the GKS3 family members of N. jatamansi had a close relationship with those of Arabidopsis. RT-qPCR results showed that NjBIN2 presented a tissue-specific expression pattern with the highest expression in roots, suggesting that NjBIN2 played a role in root growth and development. In addition, the application of epibrassinolide or the brassinosteroid(BR) synthesis inhibitor(brassinazole) altered the expression pattern of NjBIN2 and influenced the photomorphogenesis(cotyledon opening) and root development of N. jatamansi, which provided direct evidence about the functions of NjBIN2. In conclusion, this study highlights the roles of BIN2 in regulating the growth and development of N. jatamansi by analyzing the expression pattern and biological function of NjBIN2. It not only enriches the understanding about the regulatory mechanism of the growth and development of N. jatamansi but also provides a theoretical basis and potential gene targets for molecular breeding of N. jatamansi with improved quality in the future.
Brassinosteroids/metabolism*
;
Steroids, Heterocyclic/metabolism*
;
Gene Expression Regulation, Plant/drug effects*
;
Plant Proteins/metabolism*
;
Phylogeny
;
Nardostachys/metabolism*
;
Plant Growth Regulators/pharmacology*
;
Plant Roots/drug effects*
4.Saltwater stir-fried Plantaginis Semen alleviates renal fibrosis by regulating epithelial-mesenchymal transition in renal tubular cells.
Xin-Lei SHEN ; Qing-Ru ZHU ; Wen-Kai YU ; Li ZHOU ; Qi-Yuan SHAN ; Yi-Hang ZHANG ; Yi-Ni BAO ; Gang CAO
China Journal of Chinese Materia Medica 2025;50(5):1195-1208
This study aimed to investigate the effect of saltwater stir-fried Plantaginis Semen(SPS) on renal fibrosis in rats and decipher the underlying mechanism. Thirty-six Sprague-Dawley rats were randomly assigned into control, model, losartan potassium, and low-, medium-, and high-dose(15, 30, and 60 g·kg~(-1), respectively) SPS groups. Rats in other groups except the control group were subjected to unilateral ureteral obstruction(UUO) to induce renal fibrosis, and the modeling and gavage lasted for 14 days. After 14 consecutive days of treatment, the levels of serum creatinine(Scr) and blood urea nitrogen(BUN) in rats of each group were determined by an automatic biochemical analyzer. Hematoxylin-eosin(HE) and Masson staining were used to evaluate pathological changes in the renal tissue. Western blot and immunofluorescence assay were conducted to determine the protein levels of fibronectin(FN), collagen Ⅰ, vimentin, and α-smooth muscle actin(α-SMA) in the renal tissue. The mRNA levels of epithelial-mesenchymal transition(EMT)-associated transcription factors including twist family bHLH transcription factor 1(TWIST1), snail family transcriptional repressor 1(SNAI1), and zinc finger E-box binding homeobox 1(ZEB1), as well as inflammatory cytokines such as interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α), were determined by RT-qPCR. Human renal proximal tubular epithelial(HK2) cells exposed to transforming growth factor-β(TGF-β) for the modeling of renal fibrosis were used to investigate the inhibitory effect of SPS on EMT. Network pharmacology and Western blot were employed to explore the molecular mechanism of SPS in alleviating renal fibrosis. The results showed that SPS significantly reduced Scr and BUN levels and alleviated renal injury and collagen deposition in UUO rats. Moreover, SPS notably down-regulated the protein levels of FN, collagen Ⅰ, vimentin, and α-SMA as well as the mRNA levels of SNAI1, ZEB1, TWIST1, IL-1β, IL-6, and TNF-α in the kidneys of UUO rats and TGF-β-treated HK-2 cells. In addition, compared with Plantaginis Semen without stir-frying with saltwater, SPS showed increased content of specific compounds, which were mainly enriched in the mitogen-activated protein kinase(MAPK) signaling pathway. SPS significantly inhibited the phosphorylation of extracellular signal-regulated kinase(ERK) and p38 MAPK in the kidneys of UUO rats and TGF-β-treated HK2 cells. In conclusion, SPS can alleviate renal fibrosis by attenuating EMT through inhibition of the MAPK signaling pathway.
Animals
;
Epithelial-Mesenchymal Transition/drug effects*
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
Fibrosis/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Kidney Diseases/pathology*
;
Kidney Tubules/pathology*
;
Humans
5.Phenylpropanoids from roots of Berberis polyantha.
Dong-Mei SHA ; Shuai-Cong NI ; Li-Niu SHA-MA ; Hai-Xiao-Lin-Mo MA ; Xiao-Yong HE ; Bin HE ; Shao-Shan ZHANG ; Ying LI ; Jing WEN ; Yuan LIU ; Xin-Jia YAN
China Journal of Chinese Materia Medica 2025;50(6):1564-1568
The chemical constituents were systematically separated from the roots of Berberis polyantha by various chromatographic methods, including silica gel column chromatography, HP20 column chromatography, polyamide column chromatography, reversed-phase C_(18) column chromatography, and preparative high-performance liquid chromatography. The structures of the compounds were identified by physicochemical properties and spectroscopic techniques(1D NMR, 2D NMR, UV, MS, and CD). Four phenylpropanoids were isolated from the methanol extract of the roots of B. polyantha, and they were identified as(2R)-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone-O-β-D-glucopyranoside(1), methyl 4-hydroxy-3,5-dimethoxybenzoate(2),(+)-syringaresinol(3), and syringaresinol-4-O-β-D-glucopyranoside(4). Compound 1 was a new compound, and other compounds were isolated from this plant for the first time. The anti-inflammatory activity of these compounds was evaluated based on the release of nitric oxide(NO) in the culture of lipopolysaccharide(LPS)-induced RAW264.7 macrophages. At a concentration of 10 μmol·L~(-1), all the four compounds inhibited the LPS-induced release of NO in RAW264.7 cells, demonstrating potential anti-inflammatory properties.
Plant Roots/chemistry*
;
Animals
;
Mice
;
Berberis/chemistry*
;
RAW 264.7 Cells
;
Macrophages/immunology*
;
Drugs, Chinese Herbal/isolation & purification*
;
Nitric Oxide/metabolism*
;
Molecular Structure
;
Anti-Inflammatory Agents/isolation & purification*
6.Identification and expression analysis of seed dehydration tolerance and PLD gene family in Panax medicinal plants.
Chao-Lin LI ; Min HUANG ; Na GE ; Qing-Yan WANG ; Jin-Shan JIA ; Ting LUO ; Jin-Yan ZHANG ; Ping ZHOU ; Jun-Wen CHEN
China Journal of Chinese Materia Medica 2025;50(12):3307-3321
Panax species are mostly valuable medicinal plants. While some species' seeds are sensitive to dehydration, the dehydration tolerance of seeds from other Panax species remains unclear. The phospholipase D(PLD) gene plays an important role in plant responses to dehydration stress. However, the characteristics of the PLD gene family and their mechanisms of response to dehydration stress in seeds of Panax species with different dehydration tolerances are not well understood. This study used seeds from eight Panax species to measure the germination rates and PLD activity after dehydration and to analyze the correlation between dehydration tolerance and seed traits. Bioinformatics analysis was also conducted to characterize the PnPLD and PvPLD gene families and to evaluate their expression patterns under dehydration stress. The dehydration tolerance of Panax seeds was ranked from high to low as follows: P. ginseng, P. zingiberensis, P. quinquefolius, P. vietnamensis var. fuscidiscus, P. japonicus var. angustifolius, P. japonicus, P. notoginseng, and P. stipuleanatus. A significant negative correlation was found between dehydration tolerance and seed shape(three-dimensional variance), with flatter seeds exhibiting stronger dehydration tolerance(r=-0.792). Eighteen and nineteen PLD members were identified in P. notoginseng and P. vietnamensis var. fuscidiscus, respectively. These members were classified into five isoforms: α, β, γ, δ, and ζ. The gene structures, subcellular localization, physicochemical properties, and other characteristics of PnPLD and PvPLD were similar. Both promoters contained regulatory elements associated with plant growth and development, hormone responses, and both abiotic and biotic stress. During dehydration, the PLD enzyme activity in P. notoginseng seeds gradually increased as the water content decreased, whereas in P. vietnamensis var. fuscidiscus, PLD activity first decreased and then increased. The expression of PLDα and PLDδ in P. notoginseng seeds initially increased and then decreased, whereas in P. vietnamensis var. fuscidiscus, the expression of PLDα and PLDδ consistently decreased. In conclusion, the dehydration tolerance of Panax seeds showed a significant negative correlation with seed shape. The dehydration tolerance in P. vietnamensis var. fuscidiscus and dehydration sensitivity of P. notoginseng seeds may be related to differences in PLD enzyme activity and the expression of PLDα and PLDδ genes. This study provided the first systematic comparison of dehydration tolerance in Panax seeds and analyzed the causes of tolerance differences and the optimal water content for long-term storage at ultra-low temperatures, thus providing a theoretical basis for the short-term and ultra-low temperature long-term storage of medicinal plant seeds with varying dehydration tolerances.
Seeds/metabolism*
;
Panax/physiology*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
;
Phospholipase D/metabolism*
;
Plants, Medicinal/enzymology*
;
Germination
;
Multigene Family
;
Water/metabolism*
;
Dehydration
;
Phylogeny
7.Theoretical discussion and research progress on treatment of glucocorticoid- induced osteoporosis with traditional Chinese medicine.
Ting-Ting XU ; Ying DING ; Xia ZHANG ; Long WANG ; Shan-Shan XU ; Chun-Dong SONG ; Wen-Sheng ZHAI ; Xian-Qing REN
China Journal of Chinese Materia Medica 2025;50(16):4437-4450
Glucocorticoid-induced osteoporosis(GIOP) is a serious metabolic bone disease caused by long-term application of glucocorticoids(GCs). Traditional Chinese medicine(TCM) has unique advantages in improving bone microstructure and antagonizing hormone toxicity. This paper systematically reviews the theoretical research, clinical application, and basic research progress of TCM intervention in GIOP. In terms of theoretical research, the theory of "kidney governing bone and generating marrow" indicates that the kidney is closely related to bone development, revealing that core pathogenesis of GIOP is Yin-Yang disharmony, which can be discussed using the theories of "Yin fire", "ministerial fire", and "Yang pathogen damaging Yin". Thus, regulating Yin and Yang is the basic principle to treat GIOP. In terms of clinical application, effective empirical prescriptions(such as Bushen Zhuanggu Decoction, Bushen Jiangu Decoction, and Zibu Ganshen Formula) and Chinese patent medicines(Gushukang Capsules, Hugu Capsules, Xianling Gubao Capsules, etc.) can effectively increase bone mineral density(BMD) and improve calcium and phosphorus metabolism. The combination of traditional Chinese and western medicine can reduce the risk of fracture and play an anti-GIOP role. In terms of basic research, it has been clarified that active ingredients of TCM(such as fraxetin, ginsenoside Rg_1, and salidroside) reduce bone loss and promote bone formation by inhibiting oxidative stress, ferroptosis, and other pathways, effectively improving bone homeostasis. Additionally, classical prescriptions(Modified Yiguan Decoction, Modified Qing'e Pills, Zuogui Pills, etc.) and Chinese patent medicines(Gushukang Granules, Lurong Jiangu Dropping Pills, Gubao Capsules, etc.) can improve bone marrow microcirculation, promote osteoblast differentiation, and inhibit bone cell apoptosis through multiple pathways, multiple targets, and multiple mechanisms. Through the above three aspects, the TCM research status on GIOP is elucidated in the expectation of providing reference for its diagnosis and treatment using traditional Chinese and western medicine treatment programs.
Osteoporosis/physiopathology*
;
Humans
;
Glucocorticoids/adverse effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Medicine, Chinese Traditional
;
Bone Density/drug effects*
8.Effects of Yishen Yangsui formula() on pyroptosis in the spinal cord tissue in rats with degenerative cervical myelopathy.
Guo-Liang MA ; He YIN ; Bo XU ; Min-Shan FENG ; Dan ZHANG ; Dian ZHANG ; Xiao-Kuan QIN ; Li-Guo ZHU ; Bo-Wen YANG ; Xin CHEN
China Journal of Orthopaedics and Traumatology 2025;38(5):532-539
OBJECTIVE:
To preliminarily investigate the effects and mechanism of action of Yishen Yangsui Formula (, YSYSF)on the recovery of neurological function in rats with degenerative cervical myelopathy.
METHODS:
Fifty adult SD female rats were randomly divided into control group, sham group, model group, YSYSF group and positive drug group by using randomized numerical table method. In the model group, YSYSF group and positive drug group, polyvinyl alcohol acrylamide interpenetrating network hydrogel(water-absorbent swelling material) was used to construct a rat spinal cord chronic compression model. The sham group was implanted with the water-absorbent swelling material and then removed without causing spinal cord compression. The control group, the sham group and the model group were given equal amounts of saline by gavage, the group of YSYSF was given Chinese herbal medicine soup by gavage 9.1 g·kg-1 once a day, and the positive drug group was given tetrahexylsalicylglucoside sodium monosialate ganglioside by intraperitoneal injection 4.2 mg·kg-1 once a day. The motor function of the rats was assessed by the BBB method after 1, 3, 7, and 14 d of drug administration. The spinal cord tissues were taken from rats executed 14 d after drug administration, and the morphological changes of the spinal cord compression site were observed by HE staining, and the expression levels of Caspase-1, GSDMD, NLRP3, PYCARD, IL-1β, and IL-18 were detected in the area of spinal cord injury by Western blot method.
RESULTS:
The BBB scores of the control group and the sham group were normal at all time points after modeling, which were higher than the BBB scores of the model group, the YSYSF, and the positive drug group (P<0.05). From the 3rd day after gavage, at all time points, the BBB scores of rats in the YSYSF group and the positive drug group were higher than those of rats in the model group (P<0.05). The staining pattern of HE spinal cord tissue was normal in the control group and the sham group, and the HE spinal cord in the model group was severely damaged with a large number of neuron deaths, whereas the damage to the spinal cord and neuron cells was reduced in the YSYSF group and the positive drug group. The expression levels of caspase-1, GSDMD, NLRP3, PYCARD, IL-1β and IL-18 in the spinal cord of the model group were significantly higher than those of the sham group (P<0.0001), and the expression levels of caspase-1, GSDMD, NLRP3, PYCARD, IL-1β, and IL-18 in the YSYSF group and the drug group were significantly lower than those in the model group (P<0.05).
CONCLUSION
YSYSF can improve the motor function of rats with degenerative cervical spinal cord disease, alleviate the pathological changes, and promote the recovery of spinal cord neurological function. The specific mechanism may be related to the inhibition of the activation of inflammatory vesicles NLRP3 and PYCARD, the reduction of the release of inflammatory factors IL-1β and IL-18, the reduction of the expression of caspase-1 and GSDMD, the reduction of cellular death, and the inhibition of inflammatory response.
Animals
;
Female
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Rats, Sprague-Dawley
;
Pyroptosis/drug effects*
;
Spinal Cord/pathology*
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Spinal Cord Diseases/drug therapy*
;
Interleukin-1beta/metabolism*
9.YOLOX-SwinT algorithm improves the accuracy of AO/OTA classification of intertrochanteric fractures by orthopedic trauma surgeons.
Xue-Si LIU ; Rui NIE ; Ao-Wen DUAN ; Li YANG ; Xiang LI ; Le-Tian ZHANG ; Guang-Kuo GUO ; Qing-Shan GUO ; Dong-Chu ZHAO ; Yang LI ; He-Hua ZHANG
Chinese Journal of Traumatology 2025;28(1):69-75
PURPOSE:
Intertrochanteric fracture (ITF) classification is crucial for surgical decision-making. However, orthopedic trauma surgeons have shown lower accuracy in ITF classification than expected. The objective of this study was to utilize an artificial intelligence (AI) method to improve the accuracy of ITF classification.
METHODS:
We trained a network called YOLOX-SwinT, which is based on the You Only Look Once X (YOLOX) object detection network with Swin Transformer (SwinT) as the backbone architecture, using 762 radiographic ITF examinations as the training set. Subsequently, we recruited 5 senior orthopedic trauma surgeons (SOTS) and 5 junior orthopedic trauma surgeons (JOTS) to classify the 85 original images in the test set, as well as the images with the prediction results of the network model in sequence. Statistical analysis was performed using the SPSS 20.0 (IBM Corp., Armonk, NY, USA) to compare the differences among the SOTS, JOTS, SOTS + AI, JOTS + AI, SOTS + JOTS, and SOTS + JOTS + AI groups. All images were classified according to the AO/OTA 2018 classification system by 2 experienced trauma surgeons and verified by another expert in this field. Based on the actual clinical needs, after discussion, we integrated 8 subgroups into 5 new subgroups, and the dataset was divided into training, validation, and test sets by the ratio of 8:1:1.
RESULTS:
The mean average precision at the intersection over union (IoU) of 0.5 (mAP50) for subgroup detection reached 90.29%. The classification accuracy values of SOTS, JOTS, SOTS + AI, and JOTS + AI groups were 56.24% ± 4.02%, 35.29% ± 18.07%, 79.53% ± 7.14%, and 71.53% ± 5.22%, respectively. The paired t-test results showed that the difference between the SOTS and SOTS + AI groups was statistically significant, as well as the difference between the JOTS and JOTS + AI groups, and the SOTS + JOTS and SOTS + JOTS + AI groups. Moreover, the difference between the SOTS + JOTS and SOTS + JOTS + AI groups in each subgroup was statistically significant, with all p < 0.05. The independent samples t-test results showed that the difference between the SOTS and JOTS groups was statistically significant, while the difference between the SOTS + AI and JOTS + AI groups was not statistically significant. With the assistance of AI, the subgroup classification accuracy of both SOTS and JOTS was significantly improved, and JOTS achieved the same level as SOTS.
CONCLUSION
In conclusion, the YOLOX-SwinT network algorithm enhances the accuracy of AO/OTA subgroups classification of ITF by orthopedic trauma surgeons.
Humans
;
Hip Fractures/diagnostic imaging*
;
Orthopedic Surgeons
;
Algorithms
;
Artificial Intelligence
10.Analysis of risk factors, pathogenic bacteria characteristics, and drug resistance of postoperative surgical site infection in adults with limb fractures.
Yan-Jun WANG ; Zi-Hou ZHAO ; Shuai-Kun LU ; Guo-Liang WANG ; Shan-Jin MA ; Lin-Hu WANG ; Hao GAO ; Jun REN ; Zhong-Wei AN ; Cong-Xiao FU ; Yong ZHANG ; Wen LUO ; Yun-Fei ZHANG
Chinese Journal of Traumatology 2025;28(4):241-251
PURPOSE:
We carried out the study aiming to explore and analyze the risk factors, the distribution of pathogenic bacteria, and their antibiotic-resistance characteristics influencing the occurrence of surgical site infection (SSI), to provide valuable assistance for reducing the incidence of SSI after traumatic fracture surgery.
METHODS:
A retrospective case-control study enrolling 3978 participants from January 2015 to December 2019 receiving surgical treatment for traumatic fractures was conducted at Tangdu Hospital of Air Force Medical University. Baseline data, demographic characteristics, lifestyles, variables related to surgical treatment, and pathogen culture were harvested and analyzed. Univariate analyses and multivariate logistic regression analyses were used to reveal the independent risk factors of SSI. A bacterial distribution histogram and drug-sensitive heat map were drawn to describe the pathogenic characteristics.
RESULTS:
Included 3978 patients 138 of them developed SSI with an incidence rate of 3.47% postoperatively. By logistic regression analysis, we found that variables such as gender (males) (odds ratio (OR) = 2.012, 95% confidence interval (CI): 1.235 - 3.278, p = 0.005), diabetes mellitus (OR = 5.848, 95% CI: 3.513 - 9.736, p < 0.001), hypoproteinemia (OR = 3.400, 95% CI: 1.280 - 9.031, p = 0.014), underlying disease (OR = 5.398, 95% CI: 2.343 - 12.438, p < 0.001), hormonotherapy (OR = 11.718, 95% CI: 6.269 - 21.903, p < 0.001), open fracture (OR = 29.377, 95% CI: 9.944 - 86.784, p < 0.001), and intraoperative transfusion (OR = 2.664, 95% CI: 1.572 - 4.515, p < 0.001) were independent risk factors for SSI, while, aged over 59 years (OR = 0.132, 95% CI: 0.059 - 0.296, p < 0.001), prophylactic antibiotics use (OR = 0.082, 95% CI: 0.042 - 0.164, p < 0.001) and vacuum sealing drainage use (OR = 0.036, 95% CI: 0.010 - 0.129, p < 0.001) were protective factors. Pathogens results showed that 301 strains of 38 species of bacteria were harvested, among which 178 (59.1%) strains were Gram-positive bacteria, and 123 (40.9%) strains were Gram-negative bacteria. Staphylococcus aureus (108, 60.7%) and Enterobacter cloacae (38, 30.9%) accounted for the largest proportion. The susceptibility of Gram-positive bacteria to Vancomycin and Linezolid was almost 100%. The susceptibility of Gram-negative bacteria to Imipenem, Amikacin, and Meropenem exceeded 73%.
CONCLUSION
Orthopedic surgeons need to develop appropriate surgical plans based on the risk factors and protective factors associated with postoperative SSI to reduce its occurrence. Meanwhile, it is recommended to strengthen blood glucose control in the early stage of admission and for surgeons to be cautious and scientific when choosing antibiotic therapy in clinical practice.
Humans
;
Surgical Wound Infection/epidemiology*
;
Male
;
Female
;
Risk Factors
;
Retrospective Studies
;
Middle Aged
;
Adult
;
Case-Control Studies
;
Fractures, Bone/surgery*
;
Aged
;
Drug Resistance, Bacterial
;
Logistic Models
;
Anti-Bacterial Agents/therapeutic use*
;
Incidence
;
Bacteria/drug effects*

Result Analysis
Print
Save
E-mail