1.Preparation of new hydrogels and their synergistic effects of immunochemotherapy
Wen-wen YAN ; Yan-long ZHANG ; Ming-hui CAO ; Zheng-han LIU ; Hong LEI ; Xiang-qian JIA
Acta Pharmaceutica Sinica 2025;60(2):479-487
In recent years, cancer treatment methods and means are becoming more and more diversified, and single treatment methods often have limited efficacy, while the synergistic effect of immunity combined with chemotherapy can inhibit tumor growth more effectively. Based on this, we constructed a sodium alginate hydrogel composite system loaded with chemotherapeutic agents and tumor vaccines (named SA-DOX-NA) with a view to the combined use of chemotherapeutic agents and tumor vaccines. Firstly, the tumor vaccine (named NA) degradable under acidic conditions was constructed by
2.Status of Clinical Practice Guideline Information Platforms
Xueqin ZHANG ; Yun ZHAO ; Jie LIU ; Long GE ; Ying XING ; Simeng REN ; Yifei WANG ; Wenzheng ZHANG ; Di ZHANG ; Shihua WANG ; Yao SUN ; Min WU ; Lin FENG ; Tiancai WEN
Medical Journal of Peking Union Medical College Hospital 2025;16(2):462-471
Clinical practice guidelines represent the best recommendations for patient care. They are developed through systematically reviewing currently available clinical evidence and weighing the relative benefits and risks of various interventions. However, clinical practice guidelines have to go through a long translation cycle from development and revision to clinical promotion and application, facing problems such as scattered distribution, high duplication rate, and low actual utilization. At present, the clinical practice guideline information platform can directly or indirectly solve the problems related to the lengthy revision cycles, decentralized dissemination and limited application of clinical practice guidelines. Therefore, this paper systematically examines different types of clinical practice guideline information platforms and investigates their corresponding challenges and emerging trends in platform design, data integration, and practical implementation, with the aim of clarifying the current status of this field and providing valuable reference for future research on clinical practice guideline information platforms.
3.Communication Between Mitochondria and Nucleus With Retrograde Signals
Wen-Long ZHANG ; Lei QUAN ; Yun-Gang ZHAO
Progress in Biochemistry and Biophysics 2025;52(7):1687-1707
Mitochondria, the primary energy-producing organelles of the cell, also serve as signaling hubs and participate in diverse physiological and pathological processes, including apoptosis, inflammation, oxidative stress, neurodegeneration, and tumorigenesis. As semi-autonomous organelles, mitochondrial functionality relies on nuclear support, with mitochondrial biogenesis and homeostasis being stringently regulated by the nuclear genome. This interdependency forms a bidirectional signaling network that coordinates cellular energy metabolism, gene expression, and functional states. During mitochondrial damage or dysfunction, retrograde signals are transmitted to the nucleus, activating adaptive transcriptional programs that modulate nuclear transcription factors, reshape nuclear gene expression, and reprogram cellular metabolism. This mitochondrion-to-nucleus communication, termed “mitochondrial retrograde signaling”, fundamentally represents a mitochondrial “request” to the nucleus to maintain organellar health, rooted in the semi-autonomous nature of mitochondria. Despite possessing their own genome, the “fragmented” mitochondrial genome necessitates reliance on nuclear regulation. This genomic incompleteness enables mitochondria to sense and respond to cellular and environmental stressors, generating signals that modulate the functions of other organelles, including the nucleus. Evolutionary transfer of mitochondrial genes to the nuclear genome has established mitochondrial control over nuclear activities via retrograde communication. When mitochondrial dysfunction or environmental stress compromises cellular demands, mitochondria issue retrograde signals to solicit nuclear support. Studies demonstrate that mitochondrial retrograde signaling pathways operate in pathological contexts such as oxidative stress, electron transport chain (ETC) impairment, apoptosis, autophagy, vascular tension, and inflammatory responses. Mitochondria-related diseases exhibit marked heterogeneity but invariably result in energy deficits, preferentially affecting high-energy-demand tissues like muscles and the nervous system. Consequently, mitochondrial dysfunction underlies myopathies, neurodegenerative disorders, metabolic diseases, and malignancies. Dysregulated retrograde signaling triggers proliferative and metabolic reprogramming, driving pathological cascades. Mitochondrial retrograde signaling critically influences tumorigenesis and progression. Tumor cells with mitochondrial dysfunction exhibit compensatory upregulation of mitochondrial biogenesis, excessive superoxide production, and ETC overload, collectively promoting metastatic tumor development. Recent studies reveal that mitochondrial retrograde signaling—mediated by altered metabolite levels or stress signals—induces epigenetic modifications and is intricately linked to tumor initiation, malignant progression, and therapeutic resistance. For instance, mitochondrial dysfunction promotes oncogenesis through mechanisms such as epigenetic dysregulation, accumulation of mitochondrial metabolic intermediates, and mitochondrial DNA (mtDNA) release, which activates the cytosolic cGAS-STING signaling pathway. In normal cells, miR-663 mediates mitochondrion-to-nucleus retrograde signaling under reactive oxygen species (ROS) regulation. Mitochondria modulate miR-663 promoter methylation, which governs the expression and supercomplex stability of nuclear-encoded oxidative phosphorylation (OXPHOS) subunits and assembly factors. However, dysfunctional mitochondria induce oxidative stress, elevate methyltransferase activity, and cause miR-663 promoter hypermethylation, suppressing miR-663 expression. Mitochondrial dysfunction also triggers retrograde signaling in primary mitochondrial diseases and contributes to neurodegenerative disorders such as Parkinson’s disease (PD) and Alzheimer’s disease (AD). Current therapeutic strategies targeting mitochondria in neurological diseases focus on 5 main approaches: alleviating oxidative stress, inhibiting mitochondrial fission, enhancing mitochondrial biogenesis, mitochondrial protection, and insulin sensitization. In AD patients, mitochondrial morphological abnormalities and enzymatic defects, such as reduced pyruvate dehydrogenase and α-ketoglutarate dehydrogenase activity, are observed. Platelets and brains of AD patients exhibit diminished cytochrome c oxidase (COX) activity, correlating with mitochondrial dysfunction. To model AD-associated mitochondrial pathology, researchers employ cybrid technology, transferring mtDNA from AD patients into enucleated cells. These cybrids recapitulate AD-related mitochondrial phenotypes, including reduced COX activity, elevated ROS production, oxidative stress markers, disrupted calcium homeostasis, activated stress signaling pathways, diminished mitochondrial membrane potential, apoptotic pathway activation, and increased Aβ42 levels. Furthermore, studies indicate that Aβ aggregates in AD and α‑synuclein aggregates in PD trigger mtDNA release from damaged microglial mitochondria, activating the cGAS-STING pathway. This induces a reactive microglial transcriptional state, exacerbating neurodegeneration and cognitive decline. Targeting the cGAS-STING pathway may yield novel therapeutics for neurodegenerative diseases like AD, though translation from bench to bedside remains challenging. Such research not only deepens our understanding of disease mechanisms but also informs future therapeutic strategies. Investigating the triggers, core molecular pathways, and regulatory networks of mitochondrial retrograde signaling advances our comprehension of intracellular communication and unveils novel pathogenic mechanisms underlying malignancies, neurodegenerative diseases, and type 2 diabetes mellitus. This review summarizes established mitochondrial-nuclear retrograde signaling axes, their roles in interorganellar crosstalk, and pathological consequences of dysregulated communication. Targeted modulation of key molecules and proteins within these signaling networks may provide innovative therapeutic avenues for these diseases.
4.Correlation between depressive symptom and traditional Chinese medicine constitution among school aged children and adolescents
Chinese Journal of School Health 2025;46(9):1222-1225
Objective:
To explore the correlation between traditional Chinese medicine (TCM) constitution and depressive symptom among school aged children and adolescents, so as to provide evidences for informing constitution based regulation and prevention of depressive symptom.
Methods:
From June to December 2024, a total of 4 729 students aged 6-14 were recruited by cluster random sampling from 10 primary schools in Baoding (Hebei Province), Heze and Liaocheng (Shandong Province). General information, TCM constitution and depressive symptom were collected. Restricted cubic spline (RCS) models were used to analyze related factors and threshold effects of depressive symptom. Binary Logistic regression was applied to examine the association between depressive symptom and TCM constitution, with subgroup analyses conducted.
Results:
The detection rate of depressive symptom among the included children and adolescents was 25.82%. RCS analyses indicated non linear associations between depressive symptom and age (inflection point at 10 years old), bedtime (inflection point at 22:00), and wake up time (inflection point at 6:30 ) (all P non linearity <0.01). Linear associations were observed with body mass index (BMI) and sleep duration (all P non linearity > 0.05 ). After adjusting for covariates such as age, BMI and sleep status, binary Logistic regression analyses showed that Yin deficient constitution ( OR =1.26, 95% CI =1.09-1.45) and Phlegm-dampness constitution ( OR =1.42, 95% CI =1.11-1.82) were significantly associated with depressive symptom among children and adolescents (all P <0.05).
Conclusions
Depressive symptom among school aged children and adolescents is primarily associated with Yin deficiency and Phlegm dampness constitutions in TCM constitution. Active attention should be paid to susceptible TCM constitution among children and adolescents. Targeted health guidance and interventions should be implemented to improve TCM constitution health status for preventing the occurrence of depressive symptom.
5.Phenolic constituents of Sanguisorba officinalis and their Nrf2 agonistic effect
Long-long WU ; Jing-wen LIU ; Zhong-lian YU ; Liu-qiang ZHANG ; Yi-ming LI
Acta Pharmaceutica Sinica 2024;59(1):170-182
Thirty-one phenolic constituents were isolated and purified from the 95% ethanol extract of Sanguisorbae Radix by using various chromatographic techniques, including macroporous resin, silica gel, ODS, Sephadex LH-20 and semi-preparative HPLC. Their structures were elucidated by physicochemical properties, spectroscopic data (MS and NMR) and electronic circular dichroism (ECD) spectra, and identified as 3-methoxyl-2
6.Exploration on bioactive equivalent combinatorial components of Xiaoke formula and its mechanism based on insulin resistance mice
Jian ZHANG ; Wen-juan MA ; Lin-jie DONG ; Jiang-lan LONG ; Yu ZHANG ; Dan YAN
Acta Pharmaceutica Sinica 2024;59(6):1698-1705
Xiaoke formula (XKF) is a classic formula for the treatment of insulin resistance (IR), but there is still unclear on bioactive equivalent combinatorial components (BECC) of XKF. In this study, based on the previous research of our team, three components, berberine, astragaloside IV and chlorogenic acid, were selected as the BECC of XKF, and their efficacy and mechanism were investigated. A high-fat diet-induced IR mouse model was used to detect blood glucose, insulin sensitivity, lipid metabolism, immune & inflammatory factors, etc., and staining of pathology sections was used to detect histopathological changes. Network pharmacology was used to predict the potential targets and signaling pathways of XKF and its BECC, and the results of the network were verified by Western blot. The animal welfare and experimental procedures followed the regulations of the Laboratory Animal Ethics Committee of Beijing MDKN Biotech Company (MDKN-2023-019). The results showed that BECC, which was composed of berberine, astragaloside IV and chlorogenic acid in the ratio of the original formula of XKF, was comparable to XKF in improving the glycemia, insulin sensitivity, histopathological damage, dyslipidemia, and immuno-inflammation in IR mice. The results of network pharmacology and Western blot suggested that the BECC of XKF and XKF might alleviate IR by promoting the activation of hepatic phosphatidylinositol 3-kinase (PI3K), phosphorylation of protein kinase B (AKT), and inhibiting the expression of glucose-6-phosphate phosphatase (G6PC) and phosphoenolpyruvate carboxykinase 1 (PCK1), the key limiting enzymes of hepatic gluconeogenesis. The above results suggest that berberine, astragaloside IV and chlorogenic acid can be used as the potential BECC of XKF to improve IR, and can regulate lipid metabolism, immuno-inflammation, and promote hepatic PI3K/AKT signaling to inhibit hepatic gluconeogenesis, regulate glucose homeostasis, and improve IR in mice.
7.Based on supramolecular chemistry to explore the scientific connotation of the compatibility between licorice and the insoluble mineral medicine gypsum
Yao-zhi ZHANG ; Wen-min PI ; Lin-ying WU ; Lu-ping YANG ; Shu-chang YAO ; Xiang ZHANG ; Xue-mei HUANG ; Peng-long WANG
Acta Pharmaceutica Sinica 2024;59(4):1048-1056
Licorice-gypsum (gancao-shigao, GC-SG) drug pair was used as the research object, using supramolecular chemistry to explore the scientific connotation of combining herbal medicine GC with insoluble mineral medicine SG in clinical application of traditional Chinese medicine. ① The Tyndall effect, microscopic morphology and particle size of the single and co-decocted of GC and SG were observed, the paste content and conductivity were determined, and the interaction between GC and SG was detected by isothermal titration calorimetry (ITC) and infrared absorption spectroscopy (IR). ② Calcium chloride (CaCl2), a soluble calcium salt of equal gypsum quality, was used instead of SG with GC for co-decocting to explore the effect of calcium salt content on the water decocting, and the characteristics were combined with the Tyndall effect, microscopic morphology, paste content and conductivity. ITC and IR techniques were used to detect the interaction between the two, and the interaction between them was detected by ITC and IR. The zeta potential and ultraviolet-visible spectrophotometry (UV-vis) of GC-SG and GC-CaCl2 co-decoction were compared, and the inorganic and organic components in the co-decoction were detected by inductively coupled plasma optical emission spectrometer (ICP-OES) and high performance liquid chromatography (HPLC). The results showed: ① Compared with the liquid phase of single decoction, GC-SG co-decoction had more obvious Tyndall effect, and showed uniform spherical nanoparticles under electron microscope. Physical characterization results such as paste content and conductivity showed that co-decoction promoted the dissolution of each other's components; ITC and IR results showed that there was strong interaction between GC and SG, which preliminatively indicated that GC and SG co-decoction promoted the formation of uniform and stable supramolecular system of traditional Chinese medicine. ② When soluble calcium salt was used to substitute insoluble SG with GC for co-decocting, a stronger but astigmatic light path appeared than single decocting solution, the zeta potential was reduced, and a large number of accumulated polymers were formed. The results of paste content and conductivity showed that the dissolution of the co-decocting component was reduced than the single decocting component. ITC, UV-vis and IR results showed that there was interaction between GC with Ca2+ and SG. The formation of polysink indicated that a large amount of soluble calcium salt would destroy the stability of supramolecular Chinese medicine. The results of ICP-OES and HPLC showed that the glycyrrhizic acid (GA) content of the former lower than the latter, which was related to the formation of a large number of polycondensates with the increase of Ca2+ concentration and the decrease of the dissolution of GA and other active ingredients. This study indicates that the compatibility of GC and SG can form a uniform and stable supramolecular system of traditional Chinese medicine. Calcium salt, the main component of SG, is taken as the starting point. Excessive soluble Ca2+ can promote the aggregation of active ingredients such as GA, so as to reveal the scientific connotation of the compatibility of GC and SG, an insoluble mineral medicine.
8.Preparation of traditional Chinese medicine metal complexes supramolecular hydrogel and its multiple biological activity evaluation
Lin-ying WU ; Wen-min PI ; Xiao-yu LIN ; Yao-zhi ZHANG ; Ji-hui LU ; Xue-mei HUANG ; Peng-long WANG
Acta Pharmaceutica Sinica 2024;59(5):1306-1312
The effect of different concentrations of glycyrrhizic acid (GA) and Zn2+ on the self-assembly of metal complexes was investigated by forming metal complexes, and the properties and assembly mechanisms of the formed carrier-free supramolecular hydrogel were characterised. Scanning electron microscopy (SEM) and zeta potential were used to characterise the microscopic morphology and stability of the GA-Zn complex hydrogel, which had spherical-like particles of about 1 μm with good stability; the rheometer was used to detect its materialistic properties, which showed excellent stability, self-healing property and reversibility; through
9.Based on the interaction between supramolecules of traditional Chinese medicine and enterobacteria to explore the material basis of combination of Rhei Radix et Rhizoma - Coptidis Rhizoma
Xiao-yu LIN ; Ji-hui LU ; Yao-zhi ZHANG ; Wen-min PI ; Zhi-jia WANG ; Lin-ying WU ; Xue-mei HUANG ; Peng-long WANG
Acta Pharmaceutica Sinica 2024;59(2):464-475
Based on the interaction between supramolecule of traditional Chinese medicine and enterobacteria, the material basis of
10.Outcome analysis of functional mitral regurgitation after transcatheter aortic valve replacement in patients with severe bicuspid aortic stenosis
Da-Wei LIN ; Zi-Long WENG ; Feng ZHANG ; Wen-Zhi PAN ; Da-Xin ZHOU
Fudan University Journal of Medical Sciences 2024;51(1):34-40
Objective To explore the relationship between the types of bicuspid aortic valves(BAV)and the outcome of functional mitral regurgitation(FMR)and the affecting factors of FMR.Methods From Jun 2018 to Sep 2022,patients with severe BAV aortic valve stenosis(AS)complicated with FMR underwent post transcatheter aortic valve replacement(TAVR)in Zhongshan Hospital,Fudan University were retrospectively analyzed.The baseline information and imaging data of different BAV patients were collected.Logistic regression was used to analyze the factors affecting the outcome of FMR(improvement and non-improvement).Result A total of 100 patients with TAVR were included,including 49 patients with type 0 of BAV and 51 patients with type 1 of BAV.Compared with patients of type 1,patients of type 0 had younger age[(72.78±6.09)y vs.(77.00±8.35)y,P=0.050],lower male ratio(47%vs.73%,P= 0.009)higher BMI[(23.19±2.62)kg/m2 vs.(21.99±3.13)kg/m2,P=0.041],and lower incidence of aortic regurgitation(69%vs.92%,P=0.040).Compared with the non-improvement group,the improvement group had a lower incidence of coronary heart disease(5%vs.18%,P=0.042),higher incidence of pulmonary hypertension(20%vs.2%,P=0.007),larger left ventricular diastolic diameter[(51.98±6.74)mm vs.(48.04±7.72)mm,P=0.009]and higher maximum flow velocity[(4.86±0.95)cm/s vs.(4.47±0.75)cm/s,P= 0.023]of the aortic valve.The results of Logistic regression analysis showed that preoperative pulmonary hypertension,left ventricular end-diastolic diameter and maximum valvular flow velocity of BAV patients were the potential affecting factors of FMR improvement after TAVR.Conclusion No significant difference was found in FMR improvement between BAV patients of type 0 and type 1 after TAVR.For BAV patients with AS,preoperative pulmonary hypertension,larger left ventricular end-diastolic diameter,and faster aortic valve flow velocity were associated with higher FMR improvement rate.


Result Analysis
Print
Save
E-mail