1.Investigation of the Influence of Lipoprotein(a) and Oxidized Lipoprotein(a) on Plasminogen Activation and Fibrinolysis
Matthew YAO ; S. Kent DICKESON ; Karthik DHANABALAN ; Sergey SOLOMEVICH ; Connor DENNEWITZ ; David GAILANI ; Wen-Liang SONG
Journal of Lipid and Atherosclerosis 2025;14(2):229-235
Objective:
In the present study, we compare the influence of oxidized lipoprotein(a) [Lp(a)] and unoxidized Lp(a) on plasminogen activation in the process of fibrinolysis and elucidate the potential atherogenic mechanisms of oxidized Lp(a), focusing on its role in thrombosis.
Methods:
Chromogenic substrate assays were conducted to study the kinetics of plasminogen activation. Fibrin clots were generated by incubating fibrinogen with thrombin, and plasminogen activation was triggered with tissue plasminogen activator (tPA). Experiments were performed in low and high concentrations of Lp(a) or oxidized Lp(a) to evaluate their respective effects on plasmin generation. Oxidized Lp(a) was prepared by chemical oxidation of isolated Lp(a) samples.
Results:
Low concentrations of Lp(a) enhanced plasminogen activation and fibrinolysis, reflecting its physiological role. However, at higher concentrations, oxidized Lp(a) exhibited a significant inhibitory effect on plasminogen activation. Compared to unoxidized Lp(a), oxidized Lp(a) led to earlier plateauing of plasmin generation and reduced overall plasmin levels. The inhibitory effects of oxidized Lp(a) are likely due to its structural similarity to plasminogen and higher oxidized phospholipid content, which competes with plasminogen for fibrin binding—the enhanced competition with fibrin fragments and tPA by oxidized Lp(a) further impaired fibrinolysis.
Conclusion
This study demonstrates that while low levels of Lp(a) may support fibrinolysis, oxidized Lp(a) impairs this process by inhibiting plasminogen activation through structural and functional competition. These findings highlight the atherogenic potential of oxidized Lp(a) and its contribution to thrombotic cardiovascular risk.
2.Investigation of the Influence of Lipoprotein(a) and Oxidized Lipoprotein(a) on Plasminogen Activation and Fibrinolysis
Matthew YAO ; S. Kent DICKESON ; Karthik DHANABALAN ; Sergey SOLOMEVICH ; Connor DENNEWITZ ; David GAILANI ; Wen-Liang SONG
Journal of Lipid and Atherosclerosis 2025;14(2):229-235
Objective:
In the present study, we compare the influence of oxidized lipoprotein(a) [Lp(a)] and unoxidized Lp(a) on plasminogen activation in the process of fibrinolysis and elucidate the potential atherogenic mechanisms of oxidized Lp(a), focusing on its role in thrombosis.
Methods:
Chromogenic substrate assays were conducted to study the kinetics of plasminogen activation. Fibrin clots were generated by incubating fibrinogen with thrombin, and plasminogen activation was triggered with tissue plasminogen activator (tPA). Experiments were performed in low and high concentrations of Lp(a) or oxidized Lp(a) to evaluate their respective effects on plasmin generation. Oxidized Lp(a) was prepared by chemical oxidation of isolated Lp(a) samples.
Results:
Low concentrations of Lp(a) enhanced plasminogen activation and fibrinolysis, reflecting its physiological role. However, at higher concentrations, oxidized Lp(a) exhibited a significant inhibitory effect on plasminogen activation. Compared to unoxidized Lp(a), oxidized Lp(a) led to earlier plateauing of plasmin generation and reduced overall plasmin levels. The inhibitory effects of oxidized Lp(a) are likely due to its structural similarity to plasminogen and higher oxidized phospholipid content, which competes with plasminogen for fibrin binding—the enhanced competition with fibrin fragments and tPA by oxidized Lp(a) further impaired fibrinolysis.
Conclusion
This study demonstrates that while low levels of Lp(a) may support fibrinolysis, oxidized Lp(a) impairs this process by inhibiting plasminogen activation through structural and functional competition. These findings highlight the atherogenic potential of oxidized Lp(a) and its contribution to thrombotic cardiovascular risk.
3.Investigation of the Influence of Lipoprotein(a) and Oxidized Lipoprotein(a) on Plasminogen Activation and Fibrinolysis
Matthew YAO ; S. Kent DICKESON ; Karthik DHANABALAN ; Sergey SOLOMEVICH ; Connor DENNEWITZ ; David GAILANI ; Wen-Liang SONG
Journal of Lipid and Atherosclerosis 2025;14(2):229-235
Objective:
In the present study, we compare the influence of oxidized lipoprotein(a) [Lp(a)] and unoxidized Lp(a) on plasminogen activation in the process of fibrinolysis and elucidate the potential atherogenic mechanisms of oxidized Lp(a), focusing on its role in thrombosis.
Methods:
Chromogenic substrate assays were conducted to study the kinetics of plasminogen activation. Fibrin clots were generated by incubating fibrinogen with thrombin, and plasminogen activation was triggered with tissue plasminogen activator (tPA). Experiments were performed in low and high concentrations of Lp(a) or oxidized Lp(a) to evaluate their respective effects on plasmin generation. Oxidized Lp(a) was prepared by chemical oxidation of isolated Lp(a) samples.
Results:
Low concentrations of Lp(a) enhanced plasminogen activation and fibrinolysis, reflecting its physiological role. However, at higher concentrations, oxidized Lp(a) exhibited a significant inhibitory effect on plasminogen activation. Compared to unoxidized Lp(a), oxidized Lp(a) led to earlier plateauing of plasmin generation and reduced overall plasmin levels. The inhibitory effects of oxidized Lp(a) are likely due to its structural similarity to plasminogen and higher oxidized phospholipid content, which competes with plasminogen for fibrin binding—the enhanced competition with fibrin fragments and tPA by oxidized Lp(a) further impaired fibrinolysis.
Conclusion
This study demonstrates that while low levels of Lp(a) may support fibrinolysis, oxidized Lp(a) impairs this process by inhibiting plasminogen activation through structural and functional competition. These findings highlight the atherogenic potential of oxidized Lp(a) and its contribution to thrombotic cardiovascular risk.
4.Investigation of the Influence of Lipoprotein(a) and Oxidized Lipoprotein(a) on Plasminogen Activation and Fibrinolysis
Matthew YAO ; S. Kent DICKESON ; Karthik DHANABALAN ; Sergey SOLOMEVICH ; Connor DENNEWITZ ; David GAILANI ; Wen-Liang SONG
Journal of Lipid and Atherosclerosis 2025;14(2):229-235
Objective:
In the present study, we compare the influence of oxidized lipoprotein(a) [Lp(a)] and unoxidized Lp(a) on plasminogen activation in the process of fibrinolysis and elucidate the potential atherogenic mechanisms of oxidized Lp(a), focusing on its role in thrombosis.
Methods:
Chromogenic substrate assays were conducted to study the kinetics of plasminogen activation. Fibrin clots were generated by incubating fibrinogen with thrombin, and plasminogen activation was triggered with tissue plasminogen activator (tPA). Experiments were performed in low and high concentrations of Lp(a) or oxidized Lp(a) to evaluate their respective effects on plasmin generation. Oxidized Lp(a) was prepared by chemical oxidation of isolated Lp(a) samples.
Results:
Low concentrations of Lp(a) enhanced plasminogen activation and fibrinolysis, reflecting its physiological role. However, at higher concentrations, oxidized Lp(a) exhibited a significant inhibitory effect on plasminogen activation. Compared to unoxidized Lp(a), oxidized Lp(a) led to earlier plateauing of plasmin generation and reduced overall plasmin levels. The inhibitory effects of oxidized Lp(a) are likely due to its structural similarity to plasminogen and higher oxidized phospholipid content, which competes with plasminogen for fibrin binding—the enhanced competition with fibrin fragments and tPA by oxidized Lp(a) further impaired fibrinolysis.
Conclusion
This study demonstrates that while low levels of Lp(a) may support fibrinolysis, oxidized Lp(a) impairs this process by inhibiting plasminogen activation through structural and functional competition. These findings highlight the atherogenic potential of oxidized Lp(a) and its contribution to thrombotic cardiovascular risk.
5.Tetrahydropalmatine acts on α7nAChR to regulate inflammation and polarization of BV2 microglia.
Yan-Jun WANG ; Guo-Liang DAI ; Pei-Yao CHEN ; Hua-Xi HANG ; Xin-Fang BIAN ; Yu-Jie CHEN ; Wen-Zheng JU
China Journal of Chinese Materia Medica 2025;50(11):3117-3126
Based on the α7 nicotinic acetylcholine receptor(α7nAChR), this study examined how tetrahydropalmatine(THP) affected BV2 microglia exposed to lipopolysaccharide(LPS), aiming to clarify the possible mechanism underlying the anti-depression effect of THP from the perspectives of preventing inflammation and regulating polarization. First, after molecular docking and determination of the content of Corydalis saxicola Bunting total alkaloids, THP was initially identified as a possible anti-depression component. The BV2 microglia model of inflammation was established with LPS. BV2 microglia were allocated into a normal group, a model group, low-and high-dose(20 and 40 μmol·L~(-1), respectively) THP groups, and a THP(20 μmol·L~(-1))+α7nAChR-specific antagonist MLA(1 μmol·L~(-1)) group. The CCK-8 assay was used to screen the safe concentration of THP. A light microscope was used to examine the morphology of the cells. Western blot and immunofluorescence were used to determine the expression of α7nAChR. qRT-PCR was performed to determine the mRNA levels of inducible nitric oxide synthase(iNOS), cluster of differentiation 86(CD86), suppressor of cytokine signaling 3(SOCS3), arginase-1(Arg-1), cluster of differentiation 206(CD206), tumor necrosis factor(TNF)-α, interleukin(IL)-6, and IL-1β. Enzyme-linked immunosorbent assay(ELISA) was employed to measure the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. The experimental results showed that THP at concentrations of 40 μmol·L~(-1) and below had no effect on BV2 microglia. THP improved the morphology of BV2 microglia, significantly up-regulated the protein level of α7nAChR, significantly down-regulated the mRNA levels of iNOS, CD86, SOCS3, TNF-α, IL-6, and IL-1β, significantly up-regulated the mRNA levels of Arg-1 and CD206, and dramatically lowered the levels of TNF-α, IL-6, and IL-1β in the cell supernatant. However, the antagonist MLA abolished the above-mentioned ameliorative effects of THP on LPS-treated BV2 microglia. As demonstrated by the aforementioned findings, THP protected LPS-treated BV2 microglia by regulating the M1/M2 polarization and preventing inflammation, which might be connected to the regulation of α7nAChR on BV2 microglia.
Berberine Alkaloids/chemistry*
;
alpha7 Nicotinic Acetylcholine Receptor/chemistry*
;
Microglia/metabolism*
;
Mice
;
Animals
;
Cell Line
;
Corydalis/chemistry*
;
Humans
;
Molecular Docking Simulation
;
Inflammation/drug therapy*
;
Nitric Oxide Synthase Type II/immunology*
;
Tumor Necrosis Factor-alpha/immunology*
6.Complications among patients undergoing orthopedic surgery after infection with the SARS-CoV-2 Omicron strain and a preliminary nomogram for predicting patient outcomes.
Liang ZHANG ; Wen-Long GOU ; Ke-Yu LUO ; Jun ZHU ; Yi-Bo GAN ; Xiang YIN ; Jun-Gang PU ; Huai-Jian JIN ; Xian-Qing ZHANG ; Wan-Fei WU ; Zi-Ming WANG ; Yao-Yao LIU ; Yang LI ; Peng LIU
Chinese Journal of Traumatology 2025;28(6):445-453
PURPOSE:
The rate of complications among patients undergoing surgery has increased due to infection with SARS-CoV-2 and other variants of concern. However, Omicron has shown decreased pathogenicity, raising questions about the risk of postoperative complications among patients who are infected with this variant. This study aimed to investigate complications and related factors among patients with recent Omicron infection prior to undergoing orthopedic surgery.
METHODS:
A historical control study was conducted. Data were collected from all patients who underwent surgery during 2 distinct periods: (1) between Dec 12, 2022 and Jan 31, 2023 (COVID-19 positive group), (2) between Dec 12, 2021 and Jan 31, 2022 (COVID-19 negative control group). The patients were at least 18 years old. Patients who received conservative treatment after admission or had high-risk diseases or special circumstances (use of anticoagulants before surgery) were excluded from the study. The study outcomes were the total complication rate and related factors. Binary logistic regression analysis was used to identify related factors, and odds ratio (OR) and 95% confidence interval (CI) were calculated to assess the impact of COVID-19 infection on complications.
RESULTS:
In the analysis, a total of 847 patients who underwent surgery were included, with 275 of these patients testing positive for COVID-19 and 572 testing negative. The COVID-19-positive group had a significantly higher rate of total complications (11.27%) than the control group (4.90%, p < 0.001). After adjusting for relevant factors, the OR was 3.08 (95% CI: 1.45-6.53). Patients who were diagnosed with COVID-19 at 3-4 weeks (OR = 0.20 (95% CI: 0.06-0.59), p = 0.005), 5-6 weeks (OR = 0.16 (95% CI: 0.04-0.59), p = 0.010), or ≥7 weeks (OR = 0.26 (95% CI: 0.06-1.02), p = 0.069) prior to surgery had a lower risk of complications than those who were diagnosed at 0-2 weeks prior to surgery. Seven factors (age, indications for surgery, time of operation, time of COVID-19 diagnosis prior to surgery, C-reactive protein levels, alanine transaminase levels, and aspartate aminotransferase levels) were found to be associated with complications; thus, these factors were used to create a nomogram.
CONCLUSION
Omicron continues to be a significant factor in the incidence of postoperative complications among patients undergoing orthopedic surgery. By identifying the factors associated with these complications, we can determine the optimal surgical timing, provide more accurate prognostic information, and offer appropriate consultation for orthopedic surgery patients who have been infected with Omicron.
Humans
;
COVID-19/complications*
;
Male
;
Female
;
Middle Aged
;
Postoperative Complications/epidemiology*
;
SARS-CoV-2
;
Orthopedic Procedures/adverse effects*
;
Aged
;
Nomograms
;
Adult
;
Retrospective Studies
;
Risk Factors
7.Cohen syndrome in a child caused by compound heterozygous variants in VPS13B gene.
Xin MEI ; Xiao-Liang HE ; Wei-Na GAO ; Meng-Yao WANG ; Jing-Wen SHEN ; Jing WEI ; Yun XUE
Chinese Journal of Contemporary Pediatrics 2025;27(6):740-745
A 7-year-old girl was admitted to the hospital with rapidly progressive vision loss. Since 1 year of age, she had exhibited developmental delay accompanied by visual impairment and neutropenia. Combined with genetic testing and molecular pathogenicity analysis, she was diagnosed with Cohen syndrome (CS) caused by compound heterozygous variants in VPS13B (c.6940+1G>T and c.2911C>T). The c.6940+1G>T variant resulted in exon 38 skipping, leading to a frameshift and premature termination. Reverse transcription quantitative polymerase chain reaction revealed significantly reduced VPS13B gene expression (P<0.05). Bioinformatic analysis suggested that both variants likely produce truncated proteins. This case highlights that integrating clinical features with molecular pathogenicity assessment (DNA, RNA, and protein analysis) can improve early diagnostic accuracy for CS.
Humans
;
Female
;
Child
;
Vesicular Transport Proteins/genetics*
;
Developmental Disabilities/etiology*
;
Muscle Hypotonia/etiology*
;
Myopia/etiology*
;
Heterozygote
;
Intellectual Disability/etiology*
;
Microcephaly/etiology*
;
Obesity/genetics*
;
Growth Disorders/etiology*
;
Retinal Degeneration/genetics*
;
Psychomotor Disorders/genetics*
;
Fingers/abnormalities*
8.Sequential therapy with carglumic acid in three cases of organic acidemia crisis.
Yan-Yan CHEN ; Ting-Ting CHENG ; Jie YAO ; Long-Guang HUANG ; Xiu-Zhen LI ; Wen ZHANG ; Hong LIANG
Chinese Journal of Contemporary Pediatrics 2025;27(7):850-853
Case 1: A 19-day-old male infant presented with poor feeding and decreased activity for 2 weeks, worsening with poor responsiveness for 3 days. At 5 days old, he developed poor feeding and poor responsiveness, was hospitalized, and was found to have elevated blood ammonia and thrombocytopenia. Whole-genome genetic analysis revealed a pathogenic homozygous mutation in the PCCA gene, NM-000282.4: c.1834-1835del (p.Arg612AspfsTer44), leading to a diagnosis of propionic acidemia. Case 2: A 4-day-old male infant presented with poor responsiveness and feeding difficulties since birth, with elevated blood ammonia for 1 day. He showed weak sucking and deteriorating responsiveness, with blood ammonia >200 µmol/L. Genetic testing identified two heterozygous mutations in the MMUT gene: NM_000255.4: c.1677-1G>A and NM_000255.4: ex.5del, confirming methylmalonic acidemia. Case 3: A 20-day-old male infant presented with poor feeding for 15 days and skin petechiae for 8 days. He developed feeding difficulties at 5 days old and lower limb petechiae at 12 days old, with blood ammonia measured at 551.6 µmol/L. Genetic analysis found two heterozygous mutations in the PCCA gene: NM_000282.4: c.1118T>A (p.Met373Lys) and NM_000282.4: ex.16-18del, confirming propionic acidemia. In the first two cases, continuous hemodiafiltration was performed for 30 hours and 20 hours, respectively, before administering carglumic acid. In the third case, carglumic acid was administered orally without continuous hemodiafiltration, resulting in a decrease in blood ammonia from 551.6 µmol/L to 72.0 µmol/L within 6 hours, with a reduction rate of approximately 20-25 µmol/(kg·h), similar to the first two cases. Carglumic acid was effective in all three cases, suggesting it may help optimize future treatment protocols for organic acidemia.
Humans
;
Male
;
Infant, Newborn
;
Propionic Acidemia/drug therapy*
;
Amino Acid Metabolism, Inborn Errors/genetics*
;
Mutation
;
Methylmalonyl-CoA Decarboxylase/genetics*
;
Citrates/administration & dosage*
;
Carbon-Carbon Ligases/genetics*
;
Glutamates
9.Research progress of circular RNA in male reproductive disorders.
Wen-Chuan SHAO ; Liang-Yu YAO ; Ning-Hong SONG
National Journal of Andrology 2025;31(8):742-746
Male reproductive disorders have emerged as a global issue. Infertility affects 8% to 12% of couples of childbearing age. The sperm concentration and total sperm count of men have shown a significant downward trend over the past four decades, with a decrease of more than 50%. Male reproductive disorders are related to multiple factors. Circular RNA (circRNA) is a type of non-coding RNA with covalently closed circular structures. It is involved in a variety of biological processes, including gene expression regulation, protein function regulation and epigenetic regulation. Studies have shown that there are differences in the expression of circRNA in the testicles and semen between infertile patients and healthy people, suggesting that circRNA is involved in the process of spermatogenesis, and its abnormal expression is associated with male infertility. This review takes the biological functions of circRNA as the starting point and summarizes the research progress of circRNA in male reproductive disorders. CircRNA has the potential to serve as a novel biomarker due to its conservative, special structure and tissue specificity, which provides a new strategy for the clinical diagnosis of male reproductive disorders.
Humans
;
Male
;
RNA, Circular
;
Infertility, Male/genetics*
;
RNA/genetics*
;
Spermatogenesis
10.Association between blood pressure traits, hypertension, antihypertensive drugs and calcific aortic valve stenosis: a mendelian randomization study.
Wen-Hua LEI ; Jia-Liang ZHANG ; Yan-Biao LIAO ; Yan WANG ; Fei XU ; Yao-Yu ZHANG ; Yanjiani XU ; Jing ZHOU ; Fang-Yang HUANG ; Mao CHEN
Journal of Geriatric Cardiology 2025;22(3):351-360
BACKGROUND:
Hypertension is associated with an increased risk of calcific aortic valve stenosis (CAVS). However, the directionality of causation between blood pressure traits and aortic stenosis is unclear, as is the benefit of antihypertensive drugs for CAVS.
METHODS:
Using genome-wide association studies (GWAS) summary statistics, we performed bidirectional two-sample univariable mendelian randomization (UVMR) to assess the causal associations of systolic blood pressure (SBP), diastolic blood pressure (DBP), and pulse pressure (PP) with CAVS. Multivariable mendelian randomization (MVMR) was conducted to evaluate the direct effect of hypertension on CAVS, adjusting for confounders. Drug target mendelian randomization (MR) and summary-level MR (SMR) were used to estimate the effects of 12 classes of antihypertensive drugs and their target genes on CAVS risk. Inverse variance weighting was the primary MR method, with sensitivity analyses to validate results.
RESULTS:
UVMR showed SBP, DBP, and PP have causal effects on CAVS, with no significant reverse causality. MVMR confirmed the causality between hypertension and CAVS after adjusting for confounders. Drug-target MR analyses indicated that calcium channel blockers (CCBs), loop diuretics, and thiazide diuretics via SBP lowering exerted protective effects on CAVS risk. SMR analysis showed that the CCBs target gene CACNA2D2 and ARBs target gene AGTR1 were positively associated with CAVS risk, while diuretics target genes SLC12A5 and SLC12A1 were negatively associated with aortic stenosis risk.
CONCLUSIONS
Hypertension has a causal relationship with CAVS. Managing SBP in hypertensive patients with CCBs may prevent CAVS. ARBs might exert protective effects on CAVS independent of blood pressure reduction. The relationship between diuretics and CAVS is complex, with opposite effects through different mechanisms.

Result Analysis
Print
Save
E-mail