1.Application of Assessment Scales in Palliative Care for Glioma: A Systematic Review.
Zhi-Yuan XIAO ; Tian-Rui YANG ; Ya-Ning CAO ; Wen-Lin CHEN ; Jun-Lin LI ; Ting-Yu LIANG ; Ya-Ning WANG ; Yue-Kun WANG ; Xiao-Peng GUO ; Yi ZHANG ; Yu WANG ; Xiao-Hong NING ; Wen-Bin MA
Chinese Medical Sciences Journal 2025;40(3):211-218
BACKGROUND AND OBJECTIVE: Patients with glioma experience a high symptom burden and have diverse palliative care needs. However, the assessment scales used in palliative care remain non-standardized and highly heterogeneous. To evaluate the application patterns of the current scales used in palliative care for glioma, we aim to identify gaps and assess the need for disease-specific scales in glioma palliative care. METHODS: We conducted a systematic search of five databases including PubMed, Web of Science, Medline, EMBASE, and CINAHL for quantitative studies that reported scale-based assessments in glioma palliative care. We extracted data on scale characteristics, domains, frequency, and psychometric properties. Quality assessments were performed using the Cochrane ROB 2.0 and ROBINS-I tools. RESULTS: Of the 3,405 records initially identified, 72 studies were included. These studies contained 75 distinct scales that were used 193 times. Mood (21.7%), quality of life (24.4%), and supportive care needs (5.2%) assessments were the most frequently assessed items, exceeding half of all scale applications. Among the various assessment dimensions, the Distress Thermometer (DT) was the most frequently used tool for assessing mood, while the Short Form-36 Health Survey Questionnaire (SF-36) was the most frequently used tool for assessing quality of life. The Mini Mental Status Examination (MMSE) was the most common tool for cognitive assessment. Performance status (5.2%) and social support (6.8%) were underrepresented. Only three brain tumor-specific scales were identified. Caregiver-focused scales were limited and predominantly burden-oriented. CONCLUSIONS: There are significant heterogeneity, domain imbalances, and validation gaps in the current use of assessment scales for patients with glioma receiving palliative care. The scale selected for use should be comprehensive and user-friendly.
Humans
;
Glioma/psychology*
;
Palliative Care/methods*
;
Quality of Life
;
Psychometrics
;
Brain Neoplasms/psychology*
2.Hydrogen sulfide ameliorates hypoxic pulmonary hypertension in rats by inhibiting aerobic glycolysis-pyroptosis.
Yuan CHENG ; Yun-Na TIAN ; Man HUANG ; Jun-Peng XU ; Wen-Jie CAO ; Xu-Guang JIA ; Li-Yi YOU ; Wan-Tie WANG
Acta Physiologica Sinica 2025;77(3):465-471
The present study aimed to explore whether hydrogen sulfide (H2S) improved hypoxic pulmonary hypertension (HPH) in rats by inhibiting aerobic glycolysis-pyroptosis. Male Sprague-Dawley (SD) rats were randomly divided into normal group, normal+NaHS group, hypoxia group, and hypoxia+NaHS group, with 6 rats in each group. The control group rats were placed in a normoxic (21% O2) environment and received daily intraperitoneal injections of an equal volume of normal saline. The normal+NaHS group rats were placed in a normoxic environment and intraperitoneally injected with 14 μmol/kg NaHS daily. The hypoxia group rats were placed in a hypoxia chamber, and the oxygen controller inside the chamber maintained the oxygen concentration at 9% to 10% by controlling the N2 flow rate. An equal volume of normal saline was injected intraperitoneally every day. The hypoxia+NaHS group rats were also placed in an hypoxia chamber and intraperitoneally injected with 14 μmol/kg NaHS daily. After the completion of the four-week modeling, the mean pulmonary artery pressure (mPAP) of each group was measured using right heart catheterization technique, and the right ventricular hypertrophy index (RVHI) was weighed and calculated. HE staining was used to observe pathological changes in lung tissue, Masson staining was used to observe fibrosis of lung tissue, and Western blot was used to detect protein expression levels of hexokinase 2 (HK2), pyruvate dehydrogenase (PDH), pyruvate kinase isozyme type M2 (PKM2), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), GSDMD-N-terminal domain (GSDMD-N), Caspase-1, interleukin-1β (IL-1β) and IL-18 in lung tissue. ELISA was used to detect contents of IL-1β and IL-18 in lung tissue. The results showed that, compared with the normal control group, there were no significant changes in all indexes in the normal+NaHS group, while the hypoxia group exhibited significantly increased mPAP and RVHI, thickened pulmonary vascular wall, narrowed lumen, increased collagen fibers, up-regulated expression levels of aerobic glycolysis-related proteins (HK2 and PKM2), up-regulated expression levels of pyroptosis-related proteins (NLRP3, GSDMD-N, Caspase-1, IL-1β, and IL-18), and increased contents of IL-1β and IL-18. These changes of the above indexes in the hypoxia group were significantly reversed by NaHS. These results suggest that H2S can improve rat HPH by inhibiting aerobic glycolysis-pyroptosis.
Animals
;
Rats, Sprague-Dawley
;
Male
;
Hypertension, Pulmonary/metabolism*
;
Glycolysis/drug effects*
;
Hydrogen Sulfide/therapeutic use*
;
Hypoxia/complications*
;
Rats
;
Pyroptosis/drug effects*
3.Polysaccharide extract PCP1 from Polygonatum cyrtonema ameliorates cerebral ischemia-reperfusion injury in rats by inhibiting TLR4/NLRP3 pathway.
Xin ZHAN ; Zi-Xu LI ; Zhu YANG ; Jie YU ; Wen CAO ; Zhen-Dong WU ; Jiang-Ping WU ; Qiu-Yue LYU ; Hui CHE ; Guo-Dong WANG ; Jun HAN
China Journal of Chinese Materia Medica 2025;50(9):2450-2460
This study aims to investigate the protective effects and mechanisms of polysaccharide extract PCP1 from Polygonatum cyrtonema in ameliorating cerebral ischemia-reperfusion(I/R) injury in rats through modulation of the Toll-like receptor 4(TLR4)/NOD-like receptor protein 3(NLRP3) signaling pathway. In vivo, SD rats were randomly divided into the sham group, model group, PCP1 group, nimodipine(NMDP) group, and TLR4 signaling inhibitor(TAK-242) group. A middle cerebral artery occlusion/reperfusion(MCAO/R) model was established, and neurological deficit scores and infarct size were evaluated 24 hours after reperfusion. Hematoxylin-eosin(HE) and Nissl staining were used to observe pathological changes in ischemic brain tissue. Transmission electron microscopy(TEM) assessed ultrastructural damage in cortical neurons. Enzyme-linked immunosorbent assay(ELISA) was used to measure the levels of interleukin-1β(IL-1β), interleukin-6(IL-6), interleukin-18(IL-18), tumor necrosis factor-α(TNF-α), interleukin-10(IL-10), and nitric oxide(NO) in serum. Immunofluorescence was used to analyze the expression of TLR4 and NLRP3 proteins. In vitro, a BV2 microglial cell oxygen-glucose deprivation/reperfusion(OGD/R) model was established, and cells were divided into the control, OGD/R, PCP1, TAK-242, and PCP1 + TLR4 activator lipopolysaccharide(LPS) groups. The CCK-8 assay evaluated BV2 cell viability, and ELISA determined NO release. Western blot was used to analyze the expression of TLR4, NLRP3, and downstream pathway-related proteins. The results indicated that, compared with the model group, PCP1 significantly reduced neurological deficit scores, infarct size, ischemic tissue pathology, cortical cell damage, and the levels of inflammatory factors IL-1β, IL-6, IL-18, TNF-α, and NO(P<0.01). It also elevated IL-10 levels(P<0.01) and decreased the expression of TLR4 and NLRP3 proteins(P<0.05, P<0.01). Moreover, in vitro results showed that, compared with the OGD/R group, PCP1 significantly improved BV2 cell viability(P<0.05, P<0.01), reduced cell NO levels induced by OGD/R(P<0.01), and inhibited the expression of TLR4-related inflammatory pathway proteins, including TLR4, myeloid differentiation factor 88(MyD88), tumor necrosis factor receptor-associated factor 6(TRAF6), phosphorylated nuclear factor-kappaB dimer RelA(p-p65)/nuclear factor-kappaB dimer RelA(p65), NLRP3, cleaved-caspase-1, apoptosis-associated speck-like protein(ASC), GSDMD-N, IL-1β, and IL-18(P<0.05, P<0.01). The protective effects of PCP1 were reversed by LPS stimulation. In conclusion, PCP1 ameliorates cerebral I/R injury by modulating the TLR4/NLRP3 signaling pathway, exerting anti-inflammatory and anti-pyroptotic effects.
Animals
;
Toll-Like Receptor 4/genetics*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Rats, Sprague-Dawley
;
Rats
;
Reperfusion Injury/genetics*
;
Male
;
Signal Transduction/drug effects*
;
Polysaccharides/isolation & purification*
;
Polygonatum/chemistry*
;
Brain Ischemia/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Humans
4.A minimally invasive, fast on/off "odorgenetic" method to manipulate physiology.
Yanqiong WU ; Xueqin XU ; Shanchun SU ; Zeyong YANG ; Xincai HAO ; Wei LU ; Jianghong HE ; Juntao HU ; Xiaohui LI ; Hong YU ; Xiuqin YU ; Yangqiao XIAO ; Shuangshuang LU ; Linhan WANG ; Wei TIAN ; Hongbing XIANG ; Gang CAO ; Wen Jun TU ; Changbin KE
Protein & Cell 2025;16(7):615-620
5.Systematic characterization of full-length RNA isoforms in human colorectal cancer at single-cell resolution.
Ping LU ; Yu ZHANG ; Yueli CUI ; Yuhan LIAO ; Zhenyu LIU ; Zhi-Jie CAO ; Jun-E LIU ; Lu WEN ; Xin ZHOU ; Wei FU ; Fuchou TANG
Protein & Cell 2025;16(10):873-895
Dysregulated RNA splicing is a well-recognized characteristic of colorectal cancer (CRC); however, its intricacies remain obscure, partly due to challenges in profiling full-length transcript variants at the single-cell level. Here, we employ high-depth long-read scRNA-seq to define the full-length transcriptome of colorectal epithelial cells in 12 CRC patients, revealing extensive isoform diversities and splicing alterations. Cancer cells exhibited increased transcript complexity, with widespread 3'-UTR shortening and reduced intron retention. Distinct splicing regulation patterns were observed between intrinsic-consensus molecular subtypes (iCMS), with iCMS3 displaying even higher splicing factor activities and more pronounced 3'-UTR shortening. Furthermore, we revealed substantial shifts in isoform usage that result in alterations of protein sequences from the same gene with distinct carcinogenic effects during tumorigenesis of CRC. Allele-specific expression analysis revealed dominant mutant allele expression in key oncogenes and tumor suppressors. Moreover, mutated PPIG was linked to widespread splicing dysregulation, and functional validation experiments confirmed its critical role in modulating RNA splicing and tumor-associated processes. Our findings highlight the transcriptomic plasticity in CRC and suggest novel candidate targets for splicing-based therapeutic strategies.
Humans
;
Colorectal Neoplasms/metabolism*
;
RNA Isoforms/metabolism*
;
Single-Cell Analysis
;
RNA Splicing
;
Gene Expression Regulation, Neoplastic
;
RNA, Neoplasm/metabolism*
;
Transcriptome
6.Pathological Characteristics and Classification of Unstable Coronary Atheroscle-rotic Plaques
Yun-Hong XING ; Yang LI ; Wen-Zheng WANG ; Liang-Liang WANG ; Le-Le SUN ; Qiu-Xiang DU ; Jie CAO ; Guang-Long HE ; Jun-Hong SUN
Journal of Forensic Medicine 2024;40(1):59-63
Important forensic diagnostic indicators of sudden death in coronary atherosclerotic heart dis-ease,such as acute or chronic myocardial ischemic changes,sometimes make it difficult to locate the ischemic site due to the short death process,the lack of tissue reaction time.In some cases,the de-ceased died of sudden death on the first-episode,resulting in difficulty for medical examiners to make an accurate diagnosis.However,clinical studies on coronary instability plaque revealed the key role of coronary spasm and thrombosis caused by their lesions in sudden coronary death process.This paper mainly summarizes the pathological characteristics of unstable coronary plaque based on clinical medi-cal research,including plaque rupture,plaque erosion and calcified nodules,as well as the influencing factors leading to plaque instability,and briefly describes the research progress and technique of the atherosclerotic plaques,in order to improve the study on the mechanism of sudden coronary death and improve the accuracy of the forensic diagnosis of sudden coronary death by diagnosing different patho-logic states of coronary atherosclerotic plaques.
7.NDRG2 Activates Endoplasmic Reticulum Stress via IRE1α-XBP1 to Reverse Tamoxifen Resistance in ER+Breast Cancer
Shou-Ying WANG ; Yan-Yan DU ; Peng CAO ; Wen-Yu LIU ; Jun-Yu QI ; Wei-Ye SHI ; Chun-Xiao ZHANG ; Xiao-Lei ZHOU
Chinese Journal of Biochemistry and Molecular Biology 2024;40(10):1409-1416
Tamoxifen(TAM)has been widely used for the treatment of ER+breast cancer.However,the inevitable emergence of resistance to tamoxifen obstructs the successful treatment of this cancer.The tumor suppressor gene N-myc downstream-regulated gene 2(NDRG2)plays a significant role in the de-velopment of ER+breast cancer.However,it is unclear whether NDRG2 participates in mediating TAM resistance in ER+breast cancer.Here,we investigate the expression of NDRG2 mRNA and protein in TAM-sensitive and TAM-resistant ER+breast cancer cells.The results of immunoblotting experiments re-vealed a negative correlation between NDRG2 expression and TAM resistance ability in ER+breast cancer cells(P<0.001).CCK-8 cell viability assays and soft agar colony formation assays showed that NDRG2 overexpression in TAM resistant cells significantly reduced the TAM IC50 value and the soft agar colony formation rate(P<0.001).For the mechanism,the ERAD reporter protein assays showed that NDRG2 overexpression upregulated the expression of the ERAD reporter protein CD3ε-YFP and increased the lev-els of spliced XBP1s mRNA,leading to severe endoplasmic reticulum stress in TAM resistant cells(P<0.001).Immunoblot analysis confirmed that overexpression of NDRG2 significantly increased the level of phosphorylation of the endoplasmic reticulum stress sensor IRE 1α and the expression levels of its down-stream protein factors,including ERdj4,P58IPK,EDEM and PDIA5(P<0.001).The in vivo xenograft tumor experiments in mice further verified that NDRG2 overexpression significantly inhibited the growth of resistant tumors,which enhanced the therapeutic effect of TAM(P<0.001).These findings indicate that increasing NDRG2 expression and triggering severe endoplasmic reticulum stress upon TAM treatment can reverse the resistance of ER+breast cancer cells to TAM and inhibits the growth of ER+breast canc-er tumors.Our results provide valuable new insights and potential targets for improving the clinical man-agement of TAM-resistance and prognosis in ER+breast cancer.
8.Identification of Novel Variations in Exon 1 of ABO Blood Group Gene
Yang XUE ; Chao LI ; Wen-Long XIN ; Xing ZENG ; Tao MA ; Fang-Fang CHEN ; Chen CAO ; Hong-Jun GAO
Journal of Experimental Hematology 2024;32(4):1212-1216
Objective:Serological and molecular biology methods were used to identify the blood type of a patient with forward and reverse ABO typing inconsistency,and to explore the genetic characteristics of this blood type.Methods:The ABO phenotype of the proband was identified by tube method,and the ABO blood group genotype of the proband and her parents was determined by fluorescent PCR.The 7 exons of the ABO gene were directly sequenced and analyzed.Results:According to preliminary serological identification,the ABO phenotype of this patient was Bel subtype.Genotyping tests showed that the ABO genotype of the proband and her father was B/O1,and her mother was O1/O1.Sequencing of exons revealed novel heterozygous variations in exon 1:c.16_17delinsTGTTGCA.Conclusion:The Novel variations in exon 1 led to Bel subtype in the ABO blood group of the proband,and these variations are heritable.
9.RHD Genotyping Characteristics of RhD-Negative Blood Donors in Wuhu Area
Meng-Nan LI ; Zhen-Jun DU ; Jing-Wen LIU ; Rui ZHANG ; Yuan WANG ; Dian-Ming CAO ; Ji-Chun TAO ; Lu-Chen ZOU ; Hui HUANG ; En-Tao SUN
Journal of Experimental Hematology 2024;32(5):1531-1538
Objective:To investigate the molecular mechanism and distribution characteristics of RhD negative phenotypes in Han population of blood donors in Wuhu city.Methods:A total of 210 RhD-samples from August 2021 to August 2022 were screened by serological test and collected from Wuhu Central Blood Station for the voluntary blood donor population.Exons 1 and 10 of the RHD gene were amplificated by PCR to determine whether the samples had the RHD gene.Exons 1-10 of the RHD gene were amplificated by PCR and zygosity analysis were performed in 82 samples containing D gene,and Sanger sequencing was performed on 55 samples containing all RHD exons to determine the genotype.Results:Among 210 RhD-specimens,128 cases(60.38%)had RHD gene deletion.27 cases had partial exons of RHD,including 2 cases with RHD*DVI.3/RHD*01N.01,24 cases with RHD*01N.04/RHD*01N.01,and 1 case with RHD-CE(2-10)/RHD*01N.01.55 cases had retained all of 10 exons,including 4 cases with RHD*01/RHD*01N.01,6 cases with RHD*15/RHD*01N.01,1 case with RHD*01W.72/RHD*01N.01,1 case with RHD*15/RHD*01EL.01,39 cases with RHD*01EL.01/RHD*01N.01,and the remaining 4 cases were determined to have no RHD gene deletion by zygosity analysis and sequencing showed the presence of 1227G>A mutation loci.Conclusion:There is polymorphism in the molecular mechanism of RhD-D gene in Wuhu blood donor population,among which RHD*01EL.01 and RHD*15 are the main variants in this region.The results of this study provide a theoretical basis for RhD blood group identification and clinical blood transfusion in this region.
10.Research progress on neurobiological mechanisms underlying antidepressant effect of ketamine
Dong-Yu ZHOU ; Wen-Xin ZHANG ; Xiao-Jing ZHAI ; Dan-Dan CHEN ; Yi HAN ; Ran JI ; Xiao-Yuan PAN ; Jun-Li CAO ; Hong-Xing ZHANG
Chinese Pharmacological Bulletin 2024;40(9):1622-1627
Major depressive disorder(MDD)is a prevalent con-dition associated with substantial impairment and low remission rates.Traditional antidepressants demonstrate delayed effects,low cure rate,and inadequate therapeutic effectiveness for man-aging treatment-resistant depression(TRD).Several studies have shown that ketamine,a non-selective N-methyl-D-aspartate receptor(NMDAR)antagonist,can produce rapid and sustained antidepressant effects.Ketamine has demonstrated efficacy for reducing suicidality in TRD patients.However,the pharmaco-logical mechanism for ketamine's antidepressant effects remains incompletely understood.Previous research suggests that the an-tidepressant effects of ketamine may involve the monoaminergic,glutamatergic and dopaminergic systems.This paper provides an overview of the pharmacological mechanism for ketamine's anti-depressant effects and discuss the potential directions for future research.

Result Analysis
Print
Save
E-mail