1.The impact of Anchor, a home visitation programme for maltreated children, on child developmental and behavioural outcomes.
Shi Hua CHAN ; Jean Yin OH ; Li Ming ONG ; Wen Hann CHOW ; Oh Moh CHAY ; Salam SOLIMAN ; Lourdes Mary DANIEL ; Pratibha AGARWAL ; Charmain Samantha TAN ; Jun Lin SAI ; Joanne Ferriol ESPECKERMAN ; Rehena SULTANA ; Cong Jin Wilson LOW ; Sita Padmini YELESWARAPU
Annals of the Academy of Medicine, Singapore 2025;54(4):208-218
INTRODUCTION:
Adverse childhood experiences (ACEs) are associated with significant long-term impacts, yet few interventions specifically target ACE exposure, especially in Asian populations. Anchor, Singapore's first home visitation programme, addresses maltreat-ment among preschool children. This study evaluated Anchor's impact on children's developmental and behavioural outcomes.
METHOD:
We conducted a prospective evaluation of children under 4 years assessed for maltreatment from November 2019 to July 2023. Developmental and behavioural progress was measured every 6 months using the Ages and Stages Questionnaires (ASQ-3) and ASQ:Social-Emotional (ASQ:SE-2), and annually using the Child Behaviour Checklist (CBCL).
RESULTS:
The results of 125 children (mean age 20.0 months, 48% female) were analysed. The mean length of stay in programme was 21.2 (7.3) months. At baseline, 92 (73.6%) children were at risk of develop-mental delay and 25 (31.7%) children aged ≥18 months had behavioural concerns. The programme was associated with significant improvements in gross motor (P=0.002) and fine motor (P=0.001) domains of the ASQ-3 and internalising problem scale (P=0.001) of the CBCL.
CONCLUSION
Anchor effectively enhances develop-mental and behavioural outcomes for children exposed to maltreatment. Targeted early intervention through such programmes can mitigate adverse impacts, optimising developmental trajectories and potentially reducing the long-term clinical and economic burdens associated with ACEs.
Humans
;
Female
;
Male
;
Child Abuse/therapy*
;
Child, Preschool
;
Singapore
;
House Calls
;
Infant
;
Prospective Studies
;
Child Development
;
Developmental Disabilities/epidemiology*
;
Program Evaluation
;
Child Behavior Disorders
;
Child Behavior
2.Environmental sustainability in healthcare: impacts of climate change, challenges and opportunities.
Ethan Yi-Peng KOH ; Wan Fen CHAN ; Hoon Chin Steven LIM ; Benita Kiat Tee TAN ; Cherlyn Tze-Mae ONG ; Prit Anand SINGH ; Michelle Bee Hua TAN ; Marcus Jin Hui SIM ; Li Wen ONG ; Helena TAN ; Seow Yen TAN ; Wesley Chik Han HUONG ; Jonathan SEAH ; Tiing Leong ANG ; Jo-Anne YEO
Singapore medical journal 2025;66(Suppl 1):S47-S56
Environmental damage affects many aspects of healthcare, from extreme weather events to evolving population disease. Singapore's healthcare sector has the world's second highest healthcare emissions per capita, hampering the nation's pledge to reduce emissions by 2030 and achieve net zero emissions by 2050. In this review, we provide an overview of the impact environmental damage has on healthcare, including facilities, supply chain and human health, and examine measures to address healthcare's impact on the environment. Utilising the 'R's of sustainability - rethinking, reducing/refusing, reusing/repurposing/reprocessing, repairing, recycling and research - we have summarised the opportunities and challenges across medical disciplines. Awareness and advocacy to adopt strategies at institutional and individual levels is needed to revolutionise our environmental footprint and improve healthcare sustainability. By leveraging evidence from ongoing trials and integrating sustainable practices, our healthcare system can remain resilient against environment-driven challenges and evolving healthcare demands while minimising further impacts of environmental destruction.
Humans
;
Climate Change
;
Delivery of Health Care
;
Singapore
;
Conservation of Natural Resources
;
Sustainable Development
;
Environment
3.Circulating immunological transcriptomic profile identifies DDX3Y and USP9Y on the Y chromosome as promising biomarkers for predicting response to programmed death 1/programmed death ligand 1 blockade.
Liting YOU ; Zhaodan XIN ; Feifei NA ; Min CHEN ; Yang WEN ; Jin LI ; Jiajia SONG ; Ling BAI ; Jianzhao ZHAI ; Xiaohan ZHOU ; Binwu YING ; Juan ZHOU
Chinese Medical Journal 2025;138(3):364-366
4.Intermittent fasting ameliorates rheumatoid arthritis by harassing deregulated synovial fibroblasts.
Lei LI ; Jin DONG ; Yumu ZHANG ; Chen ZHAO ; Wen WEI ; Xueqin GAO ; Yao YU ; Meilin LU ; Qiyuan SUN ; Yuwei CHEN ; Xuehua JIAO ; Jie LU ; Na YUAN ; Yixuan FANG ; Jianrong WANG
Chinese Medical Journal 2025;138(23):3201-3203
5.Saponins from Panax japonicus ameliorate high-fat diet-induced anxiety by modulating FGF21 resistance.
Yan HUANG ; Bo-Wen YUE ; Yue-Qin HU ; Wei-Li LI ; Dian-Mei YU ; Jie XU ; Jin-E WANG ; Zhi-Yong ZHOU
China Journal of Chinese Materia Medica 2025;50(1):29-41
Anxiety disorder is a highly prevalent psychological illness, and research has shown that obesity is a significant risk factor for its development. This study explored the ameliorative effects and mechanisms of saponins from Panax japonicus(SPJ) on anxiety disorder in mice fed a high-fat diet(HFD). Fifty C57BL/6J mice were randomly divided into normal control diet(NCD) group, HFD group, and low-and high-dose SPJ groups. At week 12, six mice from the HFD group were further divided into a control group(treated with DMSO) and an exogenous fibroblast growth factor 21(FGF21) group(administered rFGF21). The anxiety-like behavior of the mice was assessed using the open field test and elevated plus maze test. Hematoxylin-eosin(HE) staining and oil red O staining were performed to observe pathological changes in the liver and adipose tissue. Glucose metabolism was evaluated through the glucose tolerance test(GTT) and insulin tolerance test(ITT). Western blot analysis was performed to detect the expression of FGF21 and its downstream-related proteins in the liver and cortex, along with the expression of brain-derived neurotrophic factor(BDNF), disks large homolog 4(DLG4), and synaptophysin(SYP) in the cortex. Real-time quantitative fluorescent PCR(qPCR) was used to detect the expression of FGF21 and its receptor genes in the liver and cortex. Immunofluorescence staining was employed to examine the expression of neuronal activator c-Fos, FGF21, and the FGF21 co-receptor β-klotho in the cerebral cortex. The results showed that SPJ significantly improved the frequency of activity in the open arms of the elevated plus maze and the central area of the open field in HFD mice, up-regulated the expression of BDNF, DLG4, and SYP, and effectively alleviated anxiety-like behaviors in HFD mice. Compared with the NCD group, HFD mice exhibited up-regulated expression of FGF21 in the liver and cerebral cortex, while the expression of fibroblast growth factor receptor 1(FGFR1) and β-klotho was significantly down-regulated, suggesting that HFD mice exhibited FGF21 resistance. SPJ markedly up-regulated the β-klotho levels in HFD mice, reversing FGF21 resistance. Further comparison with exogenously administered FGF21 revealed that SPJ activates brain cortical regions in a consistent manner, and additionally, SPJ promotes the number and colocalization of c-Fos and β-klotho positive cells in the brain cortex. In summary, SPJ effectively alleviates anxiety-like behaviors in HFD mice. Its mechanism is associated with up-regulation of β-klotho expression in the brain, reversal of FGF21 resistance, and subsequent activation of neurons in the cerebral cortex and amygdala.
Animals
;
Diet, High-Fat/adverse effects*
;
Fibroblast Growth Factors/genetics*
;
Mice
;
Male
;
Panax/chemistry*
;
Mice, Inbred C57BL
;
Anxiety/etiology*
;
Saponins/administration & dosage*
;
Brain-Derived Neurotrophic Factor/genetics*
;
Humans
;
Liver/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
6.Research progress on chemical constituents, pharmacological effects of Anemarrhenae Rhizoma and predictive analysis of its quality markers.
Wen-Jun WANG ; Ze-Min YANG ; An LIU ; Li-Dong SHAO ; Jin-Tang CHENG
China Journal of Chinese Materia Medica 2025;50(4):934-945
Anemarrhenae Rhizoma is bitter, sweet, and cold in nature, and has the effects of clearing heat, dispelling fire, nourishing Yin, and moisturizing dryness. It is associated with the lung, stomach, and kidney meridians, and is mainly distributed in the northwestern and northern regions of China. Modern research has shown that Anemarrhenae Rhizoma contains various chemical active constituents, including steroidal saponins, flavonoids, polysaccharides, lignans, volatile oils, and alkaloids. These constituents exhibit pharmacological effects such as anti-tumor, hypoglycemic, anti-inflammatory, and neuroprotective activities. However, there have been few comprehensive summaries of Anemarrhenae Rhizoma in recent years, which has limited its in-depth research and development. The complexity of traditional Chinese medicine constituents, along with their quality and efficacy, is easily influenced by processing, preparation, and the growing environment and resource distribution. This paper summarizes the resources, chemical constituents, and pharmacological effects of Anemarrhenae Rhizoma, and predicts its quality markers(Q-markers) from several aspects, including the specificity of chemical composition, properties related to preparation and active ingredients, measurability of chemical components, compounding environment, construction of the ″active ingredient-target″ network pathway, and differences in active ingredient content from different origins and parts. These predicted Q-markers may provide a basis for improving the quality evaluation system of Anemarrhenae Rhizoma.
Anemarrhena/chemistry*
;
Drugs, Chinese Herbal/pharmacology*
;
Rhizome/chemistry*
;
Humans
;
Animals
;
Quality Control
7.Ameliorative effects of Lycii Fructus-Chrysanthemi Flos at different ratios on retinal damage in mice.
Bing LI ; Sheng GUO ; Yue ZHU ; Xue-Sen WANG ; Dan-Dan WEI ; Hong-Jie KANG ; Wen-Hua ZHANG ; Jin-Ao DUAN
China Journal of Chinese Materia Medica 2025;50(3):732-740
This study aimed to compare the ameliorative effects of Lycii Fructus and Chrysanthemi Flos at different ratios on retinal damage in mice and to elucidate the underlying mechanisms. A retinal injury model was established by intraperitoneal injection of sodium iodate(NaIO_3) solution. The mice were divided into the following groups: blank group, model group, positive drug(AREDS 2) group, low-and high-dose groups of Lycii Fructus and Chrysanthemi Flos at 1∶1, low-and high-dose groups at 3∶1, and low-and high-dose groups at 1∶3. Administration was carried out 15 days after modeling. The visual acuity of the mice was assessed using the black-and-white box test. The fundus was observed using an optical coherence tomography device, and retinal thickness was measured. HE staining was used to observe the morphology and pathological changes of the retina. The levels of oxidative factors in serum and ocular tissues were measured using assay kits. The levels of inflammatory factors in serum and ocular tissues were detected by enzyme-linked immunosorbent assay(ELISA), and the expression of Nrf2, HO-1, and NF-κB proteins in ocular tissues was analyzed by Western blot. The results showed that after administration of Lycii Fructus and Chrysanthemi Flos at different ratios, the model group showed improved retinal thinning and disordered arrangement of retinal layers, elevated content of SOD and GSH in the serum and ocular tissues, and reduced levels of MDA, TNF-α, IL-1β, and IL-6. Lycii Fructus and Chrysanthemi Flos at 1∶1 and 1∶3 showed better improvement effects. The combination significantly upregulated the expression levels of Nrf2 and HO-1 and downregulated the expression of NF-κB p65. These results indicate that Lycii Fructus and Chrysanthemi Flos at different ratios can improve retinal damage, reduce oxidative stress, and alleviate inflammation in both the body and ocular tissues of mice. The mechanism may be related to the regulation of the Nrf2/HO-1 and NF-κB signaling pathways in ocular tissues. These findings provide a theoretical basis for the clinical application of Lycii Fructus and Chrysanthemi Flos in the treatment of dry age-related macular degeneration.
Animals
;
Mice
;
Retina/injuries*
;
Male
;
Lycium/chemistry*
;
Drugs, Chinese Herbal/administration & dosage*
;
Chrysanthemum/chemistry*
;
NF-kappa B/genetics*
;
Humans
;
Retinal Diseases/metabolism*
;
NF-E2-Related Factor 2/metabolism*
;
Oxidative Stress/drug effects*
;
Flowers/chemistry*
;
Heme Oxygenase-1/genetics*
8.Identification of blood-entering components of Anshen Dropping Pills based on UPLC-Q-TOF-MS/MS combined with network pharmacology and evaluation of their anti-insomnia effects and mechanisms.
Xia-Xia REN ; Jin-Na YANG ; Xue-Jun LUO ; Hui-Ping LI ; Miao QIAO ; Wen-Jia WANG ; Yi HE ; Shui-Ping ZHOU ; Yun-Hui HU ; Rui-Ming LI
China Journal of Chinese Materia Medica 2025;50(7):1928-1937
This study identified blood-entering components of Anshen Dropping Pills and explored their anti-insomnia effects and mechanisms. The main blood-entering components of Anshen Dropping Pills were detected and identified by UPLC-Q-TOF-MS/MS. The rationality of the formula was assessed by using enrichment analysis based on the relationship between drugs and symptoms, and core targets of its active components were selected as the the potential anti-insomnia targets of Anshen Dropping Pills through network pharmacology analysis. Furthermore, protein-protein interaction(PPI) network, Gene Ontology(GO) enrichment analysis, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis were performed on the core targets. An active component-core target network for Anshen Dropping Pills was constructed. Finally, the effects of low-, medium-, and high-dose groups of Anshen Dropping Pills on sleep episodes, sleep duration, and sleep latency in mice were measured by supraliminal and subliminal pentobarbital sodium experiments. Moreover, total scores of the Pittsburgh sleep quality index(PSQI) scale was used to evaluate the changes before and after the treatment with Anshen Dropping Pills in a clinical study. The enrichment analysis based on the relationship between drugs and symptoms verified the rationality of the Anshen Dropping Pills formula, and nine blood-entering components of Anshen Dropping Pills were identified by UPLC-Q-TOF-MS/MS. The network proximity revealed a significant correlation between eight components and insomnia, including magnoflorine, liquiritin, spinosin, quercitrin, jujuboside A, ginsenoside Rb_3, glycyrrhizic acid, and glycyrrhetinic acid. Network pharmacology analysis indicated that the major anti-insomnia pathways of Anshen Dropping Pills involved substance and energy metabolism, neuroprotection, immune system regulation, and endocrine regulation. Seven core genes related to insomnia were identified: APOE, ALB, BDNF, PPARG, INS, TP53, and TNF. In summary, Anshen Dropping Pills could increase sleep episodes, prolong sleep duration, and reduce sleep latency in mice. Clinical study results demonstrated that Anshen Dropping Pills could decrease total scores of PSQI scale. This study reveals the pharmacodynamic basis and potential multi-component, multi-target, and multi-pathway effects of Anshen Dropping Pills, suggesting that its anti-insomnia mechanisms may be associated with the regulation of insomnia-related signaling pathways. These findings offer a theoretical foundation for the clinical application of Anshen Dropping Pills.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Tandem Mass Spectrometry/methods*
;
Sleep Initiation and Maintenance Disorders/metabolism*
;
Mice
;
Network Pharmacology
;
Male
;
Chromatography, High Pressure Liquid
;
Humans
;
Protein Interaction Maps/drug effects*
;
Sleep/drug effects*
;
Female
;
Adult
9.Identification and expression analysis of seed dehydration tolerance and PLD gene family in Panax medicinal plants.
Chao-Lin LI ; Min HUANG ; Na GE ; Qing-Yan WANG ; Jin-Shan JIA ; Ting LUO ; Jin-Yan ZHANG ; Ping ZHOU ; Jun-Wen CHEN
China Journal of Chinese Materia Medica 2025;50(12):3307-3321
Panax species are mostly valuable medicinal plants. While some species' seeds are sensitive to dehydration, the dehydration tolerance of seeds from other Panax species remains unclear. The phospholipase D(PLD) gene plays an important role in plant responses to dehydration stress. However, the characteristics of the PLD gene family and their mechanisms of response to dehydration stress in seeds of Panax species with different dehydration tolerances are not well understood. This study used seeds from eight Panax species to measure the germination rates and PLD activity after dehydration and to analyze the correlation between dehydration tolerance and seed traits. Bioinformatics analysis was also conducted to characterize the PnPLD and PvPLD gene families and to evaluate their expression patterns under dehydration stress. The dehydration tolerance of Panax seeds was ranked from high to low as follows: P. ginseng, P. zingiberensis, P. quinquefolius, P. vietnamensis var. fuscidiscus, P. japonicus var. angustifolius, P. japonicus, P. notoginseng, and P. stipuleanatus. A significant negative correlation was found between dehydration tolerance and seed shape(three-dimensional variance), with flatter seeds exhibiting stronger dehydration tolerance(r=-0.792). Eighteen and nineteen PLD members were identified in P. notoginseng and P. vietnamensis var. fuscidiscus, respectively. These members were classified into five isoforms: α, β, γ, δ, and ζ. The gene structures, subcellular localization, physicochemical properties, and other characteristics of PnPLD and PvPLD were similar. Both promoters contained regulatory elements associated with plant growth and development, hormone responses, and both abiotic and biotic stress. During dehydration, the PLD enzyme activity in P. notoginseng seeds gradually increased as the water content decreased, whereas in P. vietnamensis var. fuscidiscus, PLD activity first decreased and then increased. The expression of PLDα and PLDδ in P. notoginseng seeds initially increased and then decreased, whereas in P. vietnamensis var. fuscidiscus, the expression of PLDα and PLDδ consistently decreased. In conclusion, the dehydration tolerance of Panax seeds showed a significant negative correlation with seed shape. The dehydration tolerance in P. vietnamensis var. fuscidiscus and dehydration sensitivity of P. notoginseng seeds may be related to differences in PLD enzyme activity and the expression of PLDα and PLDδ genes. This study provided the first systematic comparison of dehydration tolerance in Panax seeds and analyzed the causes of tolerance differences and the optimal water content for long-term storage at ultra-low temperatures, thus providing a theoretical basis for the short-term and ultra-low temperature long-term storage of medicinal plant seeds with varying dehydration tolerances.
Seeds/metabolism*
;
Panax/physiology*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
;
Phospholipase D/metabolism*
;
Plants, Medicinal/enzymology*
;
Germination
;
Multigene Family
;
Water/metabolism*
;
Dehydration
;
Phylogeny
10.Mechanisms and treatment of inflammation-cancer transformation in colon from perspective of cold and heat in complexity in integrative medicine.
Ning WANG ; Han-Zhou LI ; Tian-Ze PAN ; Wei-Bo WEN ; Ya-Lin LI ; Qian-Qian WAN ; Yu-Tong JIN ; Yu-Hong BIAN ; Huan-Tian CUI
China Journal of Chinese Materia Medica 2025;50(10):2605-2618
Colorectal cancer(CRC) is one of the most common malignant tumors worldwide, primarily originating from recurrent inflammatory bowel disease(IBD). Therefore, blocking the inflammation-cancer transformation in the colon has become a focus in the early prevention and treatment of CRC. The inflammation-cancer transformation in the colon involves multiple types of cells and complex pathological processes, including inflammatory responses and tumorigenesis. In this complex pathological process, immune cells(including non-specific and specific immune cells) and non-immune cells(such as tumor cells and fibroblasts) interact with each other, collectively promoting the progression of the disease. In traditional Chinese medicine(TCM), inflammation-cancer transformation in the colon belongs to the categories of dysentery and diarrhea, with the main pathogenesis being cold and heat in complexity. This paper first elaborates on the complex molecular mechanisms involved in the inflammation-cancer transformation process in the colon from the perspectives of inflammation, cancer, and their mutual influences. Subsequently, by comparing the pathogenic characteristics and clinical manifestations between inflammation-cancer transformation and the TCM pathogenesis of cold and heat in complexity, this paper explores the intrinsic connections between the two. Furthermore, based on the correlation between inflammation-cancer transformation in the colon and the TCM pathogenesis, this paper delves into the importance of the interaction between inflammation and cancer. Finally, it summarizes and discusses the clinical and basic research progress in the TCM intervention in the inflammation-cancer transformation process, providing a theoretical basis and treatment strategy for the treatment of CRC with integrated traditional Chinese and Western medicine.
Humans
;
Colon/pathology*
;
Integrative Medicine
;
Animals
;
Cold Temperature
;
Cell Transformation, Neoplastic/drug effects*
;
Medicine, Chinese Traditional
;
Hot Temperature
;
Inflammation
;
Drugs, Chinese Herbal/therapeutic use*
;
Colonic Neoplasms/drug therapy*

Result Analysis
Print
Save
E-mail