1.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
2.Distribution and Drug Resistance of Pathogens Causing Bloodstream Infection in Patients with Hematological Malignancies
Ming YANG ; Huai-Xin GENG ; Jin-Ge TAI ; Hai-Lian SHAO ; Jing-Wen CHEN ; Ke DONG
Journal of Experimental Hematology 2024;32(2):583-587
Objective:To investigate distribution and drug resistance of pathogens of bloodstream infection in patients with hematological malignancies,in order to provide reference for clinical infection control and treatment.Methods:The clinical information of blood culture patients in the hematology department of our hospital from January 2016 to December 2021 was reviewed.They were divided into transplantation group and non-transplantation group according to whether they had undergone hematopoietic stem cell transplantation.The types of pathogens and their drug resistance were analyzed.Results:Two hundred and ninety-nine positive strains of pathogenic bacteria were detected.In the transplantation group,Gram-negative bacteria accounted for 68.5%(50/73),Gram-positive bacteria accounted for 6.8%(5/73),and fungi accounted for 24.7%(18/73).The resistance rate of Escherichia coli to the third-generation cephalosporins was 77.8%,and 11.5%to carbapenems.The resistance rate of Klebsiella pneumoniae to the third-generation cephalosporins was 50.0%,and 56.2%to carbapenems.In the non-transplantation group,Gram-negative bacteria accounted for 64.1%(145/226),Gram-positive bacteria accounted for 31.0%(70/226),and fungi accounted for 4.9%(11/226).Gram-positive bacteria were mainly Enterococcus faecium(6.6%,15/226)and Coagulase-negative Staphylococci(6.2%,14/226).The fungi were all Candida tropicalis.The resistance rate of Escherichia coli to the third-generation cephalosporins was 63.8%,and 10.3%to carbapenems.The resistance rate of Klebsiella pneumoniae to the third-generation cephalosporins was 46.3%,and 26.8%to carbapenems.Conclusion:The types of pathogenic bacteria in bloodstream infection in patients with hematological malignancies are varied.Gram-negative bacteria is the main pathogenic bacteria.The resistance of pathogenic bacteria to antibiotics is severe.Antibiotics should be used scientifically and reasonably according to the detection and resistance of pathogenic bacteria.
3.Analysis of the prognostic factors in primary plasma cell leukemia in the era of novel agents
Jingjing DENG ; Xiaoyun JIN ; Zhiyao ZHANG ; Huixing ZHOU ; Guangzhong YANG ; Chuanying GENG ; Yuan JIAN ; Wenming CHEN ; Wen GAO
Chinese Journal of Hematology 2024;45(7):645-650
Objective:To explore the prognostic factors of primary plasma cell leukemia (pPCL) in the era of novel agents.Methods:The clinical data of 66 patients with pPCL treated at the Department of Haematology, Beijing Chao-Yang Hospital, Capital Medical University from 2011 to 2022 were retrospectively collected to analyze their prognostic factors.Results:Among the 66 patients with pPCL, the median age was 59 (range: 29-79) years. The median overall survival (OS) duration was 19.0 (95% CI 10.4-27.6) months, and the median progression-free survival (PFS) duration was 11.0 (95% CI 6.5-15.6) months. The median OS and PFS were significantly longer in patients with the best post-treatment response of very good partial remission (VGPR) or better than in patients with a response of partial remission (PR) or worse (median OS: 33.0 months vs 6.0 months, P<0.001; median PFS: 16.0 months vs 3.0 months, P<0.001). OS was significantly longer in patients who underwent autologous hematopoietic stem cell transplantation than in those who did not undergo transplantation (49.0 months vs 6.0 months, P=0.002), and there was a trend toward a longer PFS in patients who underwent transplantation than in those who did not undergo transplantation (19.0 months vs 8.0 months, P=0.299). The median OS and PFS were significantly longer in patients who received maintenance therapy than in those who did not receive maintenance therapy (median OS: 56.0 months vs 4.0 months, P<0.001; median PFS: 20.0 months vs 2.0 months, P<0.001). Multivariate analysis showed that hypercalcemia was an independent risk factor ( HR=3.204, 95% CI 1.068-9.610, P=0.038) for patients with pPCL, while receiving maintenance therapy ( HR=0.075, 95% CI 0.022-0.253, P<0.001) and post-treatment response of VGPR or better ( HR=0.175, 95% CI 0.048-0.638, P=0.008) were independent protective factors for patients with pPCL. Conclusions:In the era of novel agents, hypercalcemia, receiving maintenance therapy, and post-treatment response of VGPR or better are independent prognostic factors for pPCL.
4.Efficacy and safety of mitoxantrone hydrochloride liposome injection in treatment of peripheral T-cell lymphomas: a multicenter, non-interventional, ambispective cohort, real-world study (MOMENT)
Huiqiang HUANG ; Zhiming LI ; Lihong LIU ; Liang HUANG ; Jie JIN ; Hongyan TONG ; Hui ZHOU ; Zengjun LI ; Zhenqian HUANG ; Wenbin QIAN ; Kaiyang DING ; Quande LIN ; Ming HOU ; Yunhong HUANG ; Jingbo WANG ; Pengcheng HE ; Xiuhua SUN ; Xiaobo WANG ; Zunmin ZHU ; Yao LIU ; Jinhai REN ; Huijing WU ; Liling ZHANG ; Hao ZHANG ; Liangquan GENG ; Jian GE ; Ou BAI ; Liping SU ; Guangxun GAO ; Xin LI ; Yanli YANG ; Yijian CHEN ; Aichun LIU ; Xin WANG ; Yi WANG ; Liqun ZOU ; Xiaobing HUANG ; Dongping HUANG ; Shujuan WEN ; Donglu ZHAO ; Jun MA
Journal of Leukemia & Lymphoma 2023;32(8):457-464
Objective:To evaluate the efficacy and safety of mitoxantrone hydrochloride liposome injection in the treatment of peripheral T-cell lymphoma (PTCL) in a real-world setting.Methods:This was a real-world ambispective cohort study (MOMENT study) (Chinese clinical trial registry number: ChiCTR2200062067). Clinical data were collected from 198 patients who received mitoxantrone hydrochloride liposome injection as monotherapy or combination therapy at 37 hospitals from January 2022 to January 2023, including 166 patients in the retrospective cohort and 32 patients in the prospective cohort; 10 patients in the treatment-na?ve group and 188 patients in the relapsed/refractory group. Clinical characteristics, efficacy and adverse events were summarized, and the overall survival (OS) and progression-free survival (PFS) were analyzed.Results:All 198 patients were treated with mitoxantrone hydrochloride liposome injection for a median of 3 cycles (range 1-7 cycles); 28 cases were treated with mitoxantrone hydrochloride liposome injection as monotherapy, and 170 cases were treated with the combination regimen. Among 188 relapsed/refractory patients, 45 cases (23.9%) were in complete remission (CR), 82 cases (43.6%) were in partial remission (PR), and 28 cases (14.9%) were in disease stabilization (SD), and 33 cases (17.6%) were in disease progression (PD), with an objective remission rate (ORR) of 67.6% (127/188). Among 10 treatment-na?ve patients, 4 cases (40.0%) were in CR, 5 cases (50.0%) were in PR, and 1 case (10.0%) was in PD, with an ORR of 90.0% (9/10). The median follow-up time was 2.9 months (95% CI 2.4-3.7 months), and the median PFS and OS of patients in relapsed/refractory and treatment-na?ve groups were not reached. In relapsed/refractory patients, the difference in ORR between patients with different number of treatment lines of mitoxantrone hydrochloride liposome injection [ORR of the second-line, the third-line and ≥the forth-line treatment was 74.4% (67/90), 73.9% (34/46) and 50.0% (26/52)] was statistically significant ( P = 0.008). Of the 198 PTCL patients, 182 cases (91.9%) experienced at least 1 time of treatment-related adverse events, and the incidence rate of ≥grade 3 adverse events was 66.7% (132/198), which was mainly characterized by hematologic adverse events. The ≥ grade 3 hematologic adverse events mainly included decreased lymphocyte count, decreased neutrophil count, decreased white blood cell count, and anemia; non-hematologic adverse events were mostly grade 1-2, mainly including pigmentation disorders and upper respiratory tract infection. Conclusions:The use of mitoxantrone hydrochloride liposome injection-containing regimen in the treatment of PTCL has definite efficacy and is well tolerated, and it is a new therapeutic option for PTCL patients.
5.Role of Prognostic Marker PRR11 in Immune Infiltration for Facilitating Lung Adenocarcinoma Progression.
Wen Hao WANG ; Chang Geng MA ; Yun Shang CUI ; Bing Yu BAI ; Zhi Mei SHENG ; Jin LIU ; Ao LI ; Bao Gang ZHANG
Biomedical and Environmental Sciences 2023;36(9):862-868
The PRR11 gene (Proline Rich 11) has been implicated in lung cancer; however, relationship between PRR11 and immune infiltration is not clearly understood. In this study, we used The Cancer Genome Atlas (TCGA) data to analyze the lung adenocarcinoma patients; PRR11 gene expression, clinicopathological findings, enrichment, and immune infiltration were also studied. PRR11 immune response expression assays in lung adenocarcinoma (LUAD) were performed using TIMER, and statistical analysis and visualization were conducted using R software. All data were verified using Gene Expression Profiling Interactive Analysis (GEPIA), and the Human Protein Atlas (HPA). We found that PRR11 was an important prognostic factor in patients with LUAD. PRR11 expression was correlated with tumor stage and progression. Gene Set Enrichment Analysis (GSEA) showed that PRR11 was enriched in the cell cycle regulatory pathways. Immune infiltration analysis revealed that the number of T helper 2 (Th2) cells increased when PRR11 was overexpressed. These results confirm the role of PRR11 as a prognostic marker of lung adenocarcinoma by controlling the cell cycle and influencing the immune system to facilitate lung cancer progression.
Humans
;
Prognosis
;
Adenocarcinoma of Lung/genetics*
;
Lung Neoplasms/genetics*
;
Biological Assay
;
Cell Cycle
6.Exploration and Practice of the "One Combination, Two Highlights, Three Combinations, Four in One" Innovative Talents Training Mode in Forensic Medicine.
Jiang-Wei YAN ; Jun-Hong SUN ; Hong-Xing WANG ; Zhi-Wen WEI ; Xiang-Jie GUO ; Ji LI ; Cai-Rong GAO ; Geng-Qian ZHANG ; Xin-Hua LIANG ; Qiang-Qiang ZHANG ; Hong-Wei WANG ; Si-Jin LI ; Ying-Yuan WANG ; Ke-Ming YUN
Journal of Forensic Medicine 2023;39(2):193-199
Talent is one of the basic and strategic supports for building a modern socialist country in all aspects. Since the 1980s, the establishment of forensic medicine major and the cultivation of innovative talents in forensic medicine have become hot topics in higher education in forensic medicine. Over the past 43 years, the forensic medicine team of Shanxi Medical University has adhered to the joint education of public security and colleges, and made collaborative innovation, forming a training mode of "One Combination, Two Highlights, Three Combinations, Four in One" for innovative talents in forensic medicine. It has carried out "5+3/X" integrated reform, and formed a relatively complete talent training innovation mode and management system in teaching, scientific research, identification, major, discipline, team, platform and cultural construction. It has made a historic contribution to China's higher forensic education, accumulated valuable experience for the construction of first-class major and first-class discipline of forensic medicine, and provided strong support for the construction of the national new forensic talent training system. The popularization of this training mode is conducive to the rapid and sustainable development of forensic science, and provides more excellent forensic talents for national building, regional social development and the discipline construction of forensic science.
Humans
;
Forensic Medicine/education*
;
Aptitude
7.Evaluation of Renal Impairment in Patients with Diabetic Kidney Disease by Integrated Chinese and Western Medicine.
Yi-Lun QU ; Zhe-Yi DONG ; Hai-Mei CHENG ; Qian LIU ; Qian WANG ; Hong-Tao YANG ; Yong-Hui MAO ; Ji-Jun LI ; Hong-Fang LIU ; Yan-Qiu GENG ; Wen HUANG ; Wen-Hu LIU ; Hui-di XIE ; Fei PENG ; Shuang LI ; Shuang-Shuang JIANG ; Wei-Zhen LI ; Shu-Wei DUAN ; Zhe FENG ; Wei-Guang ZHANG ; Yu-Ning LIU ; Jin-Zhou TIAN ; Xiang-Mei CHEN
Chinese journal of integrative medicine 2023;29(4):308-315
OBJECTIVE:
To investigate the factors related to renal impairment in patients with diabetic kidney disease (DKD) from the perspective of integrated Chinese and Western medicine.
METHODS:
Totally 492 patients with DKD in 8 Chinese hospitals from October 2017 to July 2019 were included. According to Kidney Disease Improving Global Outcomes (KDIGO) staging guidelines, patients were divided into a chronic kidney disease (CKD) 1-3 group and a CKD 4-5 group. Clinical data were collected, and logistic regression was used to analyze the factors related to different CKD stages in DKD patients.
RESULTS:
Demographically, male was a factor related to increased CKD staging in patients with DKD (OR=3.100, P=0.002). In clinical characteristics, course of diabetes >60 months (OR=3.562, P=0.010), anemia (OR=4.176, P<0.001), hyperuricemia (OR=3.352, P<0.001), massive albuminuria (OR=4.058, P=0.002), atherosclerosis (OR=2.153, P=0.007) and blood deficiency syndrome (OR=1.945, P=0.020) were factors related to increased CKD staging in patients with DKD.
CONCLUSIONS
Male, course of diabetes >60 months, anemia, hyperuricemia, massive proteinuria, atherosclerosis, and blood deficiency syndrome might indicate more severe degree of renal function damage in patients with DKD. (Registration No. NCT03865914).
Humans
;
Male
;
Diabetes Mellitus, Type 2
;
Diabetic Nephropathies
;
Hyperuricemia
;
Kidney
;
Proteinuria
;
Renal Insufficiency, Chronic/complications*
8.Current situation of nitrogen application and its effects on yield and quality of Chinese materia medica.
Yang GE ; Chuan-Zhi KANG ; Xiu-Fu WAN ; Sheng WANG ; Chao-Geng LYU ; Wen-Jin ZHANG ; Qing-Jun YUAN ; Bin-Bin YAN ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2021;46(8):1883-1892
Nitrogen fertilizer has been the long-lasting crucial component in cultivation of Chinese materia medica(CMM) and crops for its profound effects on enhancing the productivity. In consideration of its role in better production, intensive and excessive application of N fertilizer is often found in CMM cultivation. Therefore, firstly, this review summarized various concentrations of N application with regards to different CMM and districts from the literatures published in the last two decades. The recommended concentration of nitrogen application of forty seven CMM species were covered in this review. We found that the optimum rates of nitrogen fertili-zer for different medicinal plants species were varied in the range between 0-1 035.55 kg·hm~(-2). Most of the optimum rates of nitrogen fertilizer for CMM in published researches fell between 100-199 kg·hm~(-2). The optimum rate of nitrogen fertilizer is not only related to amount of nitrogen required for different medicinal plants but also to soil fertilities of different fields. In addition, we outlined the diffe-rent effects of proper and excessive nitrogen deposition on yield of CMM. Proper nitrogen deposition benefits the yield of CMM, howe-ver, excessive nitrogen use accounts for a decrease in CMM yield. We elucidated that nutritional content, water use efficiencies, and photosynthesis capacity were major influencing factors. Researches showed that proper nitrogen fertilizer could promote the water use efficiencies of plants and boost photosynthesis. Consequently, the yield of CMM can be enhanced after nitrogen deposition. However, negative effects of nitrogen fertilizer were also found on plant including producing toxic substances to the soil and causing severe pest damages. Lastly we analyzed the impact of N fertilizer application on secondary metabolites which accounts for a large part of active pharmaceutical ingredients of CMM. It usually caused an increase in nitrogen-containing secondary metabolites content and a decrease in non-nitrogen-containing secondary metabolites content respectively. The potential underlying mechanisms are the different synthetic pathways of these metabolites and the plant nutritional status. Synthesis of non-nitrogen-containing secondary metabolites like phenols can be inhibited after nitrogen application because of the competition of the same precursor substances between metabolites synthesis and plant growth. To sum up, impacts and mechanisms of nitrogen fertilizer on yield and quality enhancement of CMM were discussed in this review. Negative effects of excessive nitrogen application on CMM should be paid special attention in CMM cultivation and prescription fertilization based on the field soil quality is strongly recommended. Overall, this review aims to provides insights on improving the proper application of N fertilizer in the cultivation of CMM.
Agriculture
;
China
;
Fertilizers
;
Materia Medica
;
Nitrogen/analysis*
;
Soil
9.Effects and mechanisms of nitrogen fertilizers on soil and tritrophic interactions in Chinese medicinal plants ecosystem.
Yang GE ; Xiu-Fu WAN ; Sheng WANG ; Chuan-Zhi KANG ; Wen-Jin ZHANG ; Chao-Geng LYU ; Jia-Hui SUN ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2021;46(8):1893-1900
Nitrogen is one of the most frequently used fertilizers in growth of Chinese medicinal plants(CMP). As in many other ecosystems, CMP ecosystem is also composed of plant-herbivore-natural enemy(tritrophic) interactions. Nitrogen fertilizer influences the growth and reproduction of CMP, and it is also able to heavily shape the ecosystem functions of CMP ecosystem through bottom-up forces. Understanding the specific effects of nitrogen fertilizer towards each trophic level will be beneficial to improve the resistance of CMP to herbivore and enhance the control efficiency of nature enemies to herbivore, and eventually, maximize the yield and quality of CMP. Most papers published on nitrogen use in plants focused mainly on the impact of nitrogen fertilization on CMP yield and quality. Influences of nitrogen application on CMP ecosystem get little attention at present. Therefore, this review summed up the potential effects of nitrogen fertilization on CMP ecosystem from perspectives of soil and tritrophic interactions. First of all, nitrogen fertilizer might decrease soil microbial biomass and altered the community structures of soil bacteria, fungi and protozoa. Negative effects of nitrogen fertilizer were found on biodiversity of soil bacteria and protozoa. Different fungi species respond differently to nitrogen fertili-zers. Nitrogen deposition can also decrease the soil pH. Decreases in soil microbial diversity and soil acidification can cause negative effects on CMP growth. In addition, nitrogen fertilizer could regulate the pest resistance of CMP including constitutive and inducible resistance. Both positive and negative effects of nitrogen application were found on pest resistance of CMP. Moreover, the development and predation of natural enemies were influenced by nitrogen deposition. Nitrogen influences natural enemies in many ways including plant volatiles, plant nutrient and structure and the supplementary food quality. Nectar and honeydew of plants and preys serve as important food source for natural enemies especially in early season when preys are still not available. Finally, the interactions between herbivores and their natural enemies were also shaped by nitrogen fertilizer in many aspects like increasing the nutritional content of prey and changing control efficiency of natural enemies. Some herbivores have evolved a strategy to sequester secondary metabolites which they absorbed from plant during their feeding. Studies showed that sequestration efficiency of secondary metabolites in prey could also be regulated by nitrogen. Parasitic, emergence, reproduction rate and longevity of parasites were found positively correlated with nitrogen deposition. Hopefully this study will shed light on practicable and economical application of nitrogen in cultivation of CMP.
China
;
Ecosystem
;
Fertilizers
;
Nitrogen
;
Plants, Medicinal
;
Soil
10.Effects and mechanisms of nitrogen application on stress resistance of Chinese materia medica.
Yang GE ; Sheng WANG ; Xiu-Fu WAN ; Chuan-Zhi KANG ; Chao-Geng LYU ; Wen-Jin ZHANG ; Tie-Lin WANG ; Qing-Jun YUAN ; Lan-Ping GUO
China Journal of Chinese Materia Medica 2021;46(8):1901-1909
Nitrogen fertilizers play an important role in the regulation of plant stress resistance. Impacts of nitrogen fertilizers on abiotic stress resistance and biotic stress resistance of Chinese materia medica(CMM) were summarized in this study. Adequate nitrogen application improves the abiotic stress resistance and weed resistance of CMM, however adverse effect appears when excess nitrogen is used. Generally, pest resistance decreases along with nitrogen deposition, while effects of nitrogen application on disease resistance vary with different diseases. Mechanisms underlying the impact of nitrogen fertilizers on plant stress resistance were also elucidated in this study from three aspects including physical defense mechanisms, biochemistry mechanisms and molecular defense mechanisms. Nitrogen availability modulates physical barrier of CMM like plant growth, formation of lignin and wax cuticle, and density of stomata. Growth of CMM promoted by nitrogen fertilizer may cause some decrease in pest resistance of CMM due to an increase in hiding places for pest along with plant growth. High ambient humidity caused by excessive plant growth facilitates the growth and development of CMM pathogen. Nitrogen application can also interfere with the accumulation of lignin in CMM which makes CMM more vulnerable to pest and pathogen attack. Stomatal closing delays due to nitrogen application is also a causal factor of increasing pathogen infection after nitrogen deposition. Biochemical defenses of plants are mainly achieved through nutrient elements, secondary metabolites, defense-related enzymes and proteins. Nutritional level of CMM and various antioxidant enzymes and resistance-related protein activities are elevated along with nitrogen deposition. These antioxidant enzymes can reduce the damage of reactive oxygen species content produced by plant in response to adversity and therefore enhance stress resistance of CMM. Researches showed that nitrogen application could also cause an increase in nitrogen-containing secondary metabolites content and a decrease in non-nitrogen-containing secondary metabolites content respectively. Nitrogen-mediated molecular defense mechanisms includes multiple plant hormones and nitric oxide signals. Plant hormones related to plant defense like salicylic acid, jasmonic acid and abscisic acid can be modulated by nitrogen application. Negative effect of nitrogen deposition was found on salicylic acid accumulation and the expression of related plant disease resistance genes. However, jasmonic acid level can be elevated by nitrogen. Nitric oxide signals constitute an important part of nitrogen mediated defense mechanisms. Nitric oxide signaling is related to many aspects of plant immunity. The roles of nitrogen fertilizers in CMM stress resistance are complex and may vary with different CMM varieties and environments. Further studies are urgently needed to provide a comprehensive understanding of how to improve stress resistance of CMM by using fertilizers.
Abscisic Acid
;
China
;
Materia Medica
;
Nitrogen
;
Plant Growth Regulators

Result Analysis
Print
Save
E-mail