1.Network Pharmacology and Experimental Verification Unraveled The Mechanism of Pachymic Acid in The Treatment of Neuroblastoma
Hang LIU ; Yu-Xin ZHU ; Si-Lin GUO ; Xin-Yun PAN ; Yuan-Jie XIE ; Si-Cong LIAO ; Xin-Wen DAI ; Ping SHEN ; Yu-Bo XIAO
Progress in Biochemistry and Biophysics 2025;52(9):2376-2392
ObjectiveTraditional Chinese medicine (TCM) constitutes a valuable cultural heritage and an important source of antitumor compounds. Poria (Poria cocos (Schw.) Wolf), the dried sclerotium of a polyporaceae fungus, was first documented in Shennong’s Classic of Materia Medica and has been used therapeutically and dietarily in China for millennia. Traditionally recognized for its diuretic, spleen-tonifying, and sedative properties, modern pharmacological studies confirm that Poria exhibits antioxidant, anti-inflammatory, antibacterial, and antitumor activities. Pachymic acid (PA; a triterpenoid with the chemical structure 3β-acetyloxy-16α-hydroxy-lanosta-8,24(31)-dien-21-oic acid), isolated from Poria, is a principal bioactive constituent. Emerging evidence indicates PA exerts antitumor effects through multiple mechanisms, though these remain incompletely characterized. Neuroblastoma (NB), a highly malignant pediatric extracranial solid tumor accounting for 15% of childhood cancer deaths, urgently requires safer therapeutics due to the limitations of current treatments. Although PA shows multi-mechanistic antitumor potential, its efficacy against NB remains uncharacterized. This study systematically investigated the potential molecular targets and mechanisms underlying the anti-NB effects of PA by integrating network pharmacology-based target prediction with experimental validation of multi-target interactions through molecular docking, dynamic simulations, and in vitro assays, aimed to establish a novel perspective on PA’s antitumor activity and explore its potential clinical implications for NB treatment by integrating computational predictions with biological assays. MethodsThis study employed network pharmacology to identify potential targets of PA in NB, followed by validation using molecular docking, molecular dynamics (MD) simulations, MM/PBSA free energy analysis, RT-qPCR and Western blot experiments. Network pharmacology analysis included target screening via TCMSP, GeneCards, DisGeNET, SwissTargetPrediction, SuperPred, and PharmMapper. Subsequently, potential targets were predicted by intersecting the results from these databases via Venn analysis. Following target prediction, topological analysis was performed to identify key targets using Cytoscape software. Molecular docking was conducted using AutoDock Vina, with the binding pocket defined based on crystal structures. MD simulations were performed for 100 ns using GROMACS, and RMSD, RMSF, SASA, and hydrogen bonding dynamics were analyzed. MM/PBSA calculations were carried out to estimate the binding free energy of each protein-ligand complex. In vitro validation included RT-qPCR and Western blot, with GAPDH used as an internal control. ResultsThe CCK-8 assay demonstrated a concentration-dependent inhibitory effect of PA on NB cell viability. GO analysis suggested that the anti-NB activity of PA might involve cellular response to chemical stress, vesicle lumen, and protein tyrosine kinase activity. KEGG pathway enrichment analysis suggested that the anti-NB activity of PA might involve the PI3K/AKT, MAPK, and Ras signaling pathways. Molecular docking and MD simulations revealed stable binding interactions between PA and the core target proteins AKT1, EGFR, SRC, and HSP90AA1. RT-qPCR and Western blot analyses further confirmed that PA treatment significantly decreased the mRNA and protein expression of AKT1, EGFR, and SRC while increasing the HSP90AA1 mRNA and protein levels. ConclusionIt was suggested that PA may exert its anti-NB effects by inhibiting AKT1, EGFR, and SRC expression, potentially modulating the PI3K/AKT signaling pathway. These findings provide crucial evidence supporting PA’s development as a therapeutic candidate for NB.
2.Epidemic analyses of brucellosis in humans in Tangshan City, Hebei Province from 2016 to 2023
Xiangbo LIU ; Wen GAO ; Renjie E ; Ling ZHANG ; Zheng LIU ; Jie PEI ; Hongli LIU ; Guangyue XIE ; Keqing NING ; Jiahong DUAN
Shanghai Journal of Preventive Medicine 2025;37(8):659-662
ObjectiveTo analyze the epidemiological trends and characteristics of brucellosis in humans (hereinafter referred to as brucellosis) in Tangshan City, Hebei Province from 2016 to 2023, and to provide a scientific basis for formulating brucellosis prevention and control strategies in the region. MethodsThe incidence data of human brucellosis in Tangshan City from 2016 to 2023 were collected from the China Disease Prevention and Control Information System. The diagnosis time, infection route, and clinical characteristics of the cases were obtained from the case investigation reports. Descriptive epidemiological methods were used to analyze the temporal, spatial, demographic distributions, and clinical characteristics of human brucellosis. Brucella species were identified using agglutination tests with bacterial suspension and A/M antigen-positive serum. ResultsA total of 2 193 cases of human brucellosis were confirmed and clinically diagnosed in Tangshan City from 2016 to 2023, with the peak incidence occured from March to August, and which exhibited distinct geographic distribution patterns. The highest incidence rate was found in people aged 60‒<70 years. The occupation of cases were primarily farmers. The incidence rate in males (528/100 000) was higher than that in females (184/100 000). All cases had confirmed exposure to infected animals or contaminated animal products. ConclusionThe epidemic of human brucellosis in Tangshan exhibited an overall steady downward trend from 2016 to 2023, except for a slight increase in 2016 and 2021, with the incidence rate controlled at 289/100 000‒335/100 000. The prevention and control situation of human brucellosis still remains severe, with the highest incidence rate in the eastern region of Tangshan, which are characterized by the breeding, slaughtering, and processing of cattle and sheep. Therefore, it it is necessary to enhance the prevention and control of human brucellosis among the personnel engaged in these industries in the eastern areas.
3.A new nor-clerodane diterpenoid from Croton lauioides.
Hao-Xin WANG ; Wen-Hao DU ; Hong-Xi XIE ; Lin CHEN ; Jun-Jie HAO ; Zhi-Yong JIANG
China Journal of Chinese Materia Medica 2025;50(11):3049-3053
The chemical constituents of the chloroform extract of the 90% methanol extract obtained from the dried branches and leaves of Croton lauioides were investigated. By using silica gel column chromatography, C_(18 )column chromatography, MCI column chromatography, and semi-preparative high-performance liquid chromatography(HPLC), six compounds were isolated. Their structures were identified as lauioidine(1), 2α-methoxy-8α-hydroxy-6-oxogermacra-1(10),7(11)-dien-8,12-olide(2), myrrhanolide B(3), gossweilone(4), 6β,7β-epox-4α-hydroxyguaian-10-ene(5), and 4(15)-eudesmane-1β,5α-diol(6) by analyzing the HR-ESI-MS, IR, ECD, 1D NMR and 2D NMR data, as well as their physicochemical properties. All compounds were isolated from C. lauioides for the first time, among which compound 1 is a new nor-clerodane diterpenoid.
Croton/chemistry*
;
Diterpenes, Clerodane/isolation & purification*
;
Molecular Structure
;
Drugs, Chinese Herbal/isolation & purification*
;
Magnetic Resonance Spectroscopy
;
Chromatography, High Pressure Liquid
4.Dimethyloxalylglycine improves functional recovery through inhibiting cell apoptosis and enhancing blood-spinal cord barrier repair after spinal cord injury.
Wen HAN ; Chao-Chao DING ; Jie WEI ; Dan-Dan DAI ; Nan WANG ; Jian-Min REN ; Hai-Lin CHEN ; Ling XIE
Chinese Journal of Traumatology 2025;28(5):361-369
PURPOSE:
The secondary damage of spinal cord injury (SCI) starts from the collapse of the blood spinal cord barrier (BSCB) to chronic and devastating neurological deficits. Thereby, the retention of the integrity and permeability of BSCB is well-recognized as one of the major therapies to promote functional recovery after SCI. Previous studies have demonstrated that activation of hypoxia inducible factor-1α (HIF-1α) provides anti-apoptosis and neuroprotection in SCI. Endogenous HIF-1α, rapidly degraded by prolylhydroxylase, is insufficient for promoting functional recovery. Dimethyloxalylglycine (DMOG), a highly selective inhibitor of prolylhydroxylase, has been reported to have a positive effect on axon regeneration. However, the roles and underlying mechanisms of DMOG in BSCB restoration remain unclear. Herein, we aim to investigate pathological changes of BSCB restoration in rats with SCI treated by DOMG and evaluate the therapeutic effects of DMOG.
METHODS:
The work was performed from 2022 to 2023. In this study, Allen's impact model and human umbilical vein endothelial cells were employed to explore the mechanism of DMOG. In the phenotypic validation experiment, the rats were randomly divided into 3 groups: sham group, SCI group, and SCI + DMOG group (10 rats for each). Histological analysis via Nissl staining, Basso-Beattie-Bresnahan scale, and footprint analysis was used to evaluate the functional recovery after SCI. Western blotting, TUNEL assay, and immunofluorescence staining were employed to exhibit levels of tight junction and adhesion junction of BSCB, HIF-1α, cell apoptosis, and endoplasmic reticulum (ER) stress. The one-way ANOVA test was used for statistical analysis. The difference was considered statistically significant at p < 0.05.
RESULTS:
In this study, we observed the expression of HIF-1α reduced in the SCI model. DMOG treatment remarkably augmented HIF-1α level, alleviated endothelial cells apoptosis and disruption of BSCB, and enhanced functional recovery post-SCI. Besides, the administration of DMOG offset the activation of ER stress induced by SCI, but this phenomenon was blocked by tunicamycin (an ER stress activator). Finally, we disclosed that DMOG maintained the integrity and permeability of BSCB by inhibiting ER stress, and inhibition of HIF-1α erased the protection from DMOG.
CONCLUSIONS
Our findings illustrate that the administration of DMOG alleviates the devastation of BSCB and HIF-1α-induced inhibition of ER stress.
Spinal Cord Injuries/pathology*
;
Animals
;
Apoptosis/drug effects*
;
Amino Acids, Dicarboxylic/therapeutic use*
;
Recovery of Function/drug effects*
;
Rats
;
Rats, Sprague-Dawley
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Male
;
Spinal Cord/blood supply*
5.Zedoarondiol Inhibits Neovascularization in Atherosclerotic Plaques of ApoE-/- Mice by Reducing Platelet Exosomes-Derived MiR-let-7a.
Bei-Li XIE ; Bo-Ce SONG ; Ming-Wang LIU ; Wei WEN ; Yu-Xin YAN ; Meng-Jie GAO ; Lu-Lian JIANG ; Zhi-Die JIN ; Lin YANG ; Jian-Gang LIU ; Da-Zhuo SHI ; Fu-Hai ZHAO
Chinese journal of integrative medicine 2025;31(3):228-239
OBJECTIVE:
To investigate the effect of zedoarondiol on neovascularization of atherosclerotic (AS) plaque by exosomes experiment.
METHODS:
ApoE-/- mice were fed with high-fat diet to establish AS model and treated with high- and low-dose (10, 5 mg/kg daily) of zedoarondiol, respectively. After 14 weeks, the expressions of anti-angiogenic protein thrombospondin 1 (THBS-1) and its receptor CD36 in plaques, as well as platelet activation rate and exosome-derived miR-let-7a were detected. Then, zedoarondiol was used to intervene in platelets in vitro, and miR-let-7a was detected in platelet-derived exosomes (Pexo). Finally, human umbilical vein endothelial cells (HUVECs) were transfected with miR-let-7a mimics and treated with Pexo to observe the effect of miR-let-7a in Pexo on tube formation.
RESULTS:
Animal experiments showed that after treating with zedoarondiol, the neovascularization density in plaques of AS mice was significantly reduced, THBS-1 and CD36 increased, the platelet activation rate was markedly reduced, and the miR-let-7a level in Pexo was reduced (P<0.01). In vitro experiments, the platelet activation rate and miR-let-7a levels in Pexo were significantly reduced after zedoarondiol's intervention. Cell experiments showed that after Pexo's intervention, the tube length increased, and the transfection of miR-let-7a minics further increased the tube length of cells, while reducing the expressions of THBS-1 and CD36.
CONCLUSION
Zedoarondiol has the effect of inhibiting neovascularization within plaque in AS mice, and its mechanism may be potentially related to inhibiting platelet activation and reducing the Pexo-derived miRNA-let-7a level.
Animals
;
MicroRNAs/genetics*
;
Exosomes/drug effects*
;
Plaque, Atherosclerotic/genetics*
;
Neovascularization, Pathologic/genetics*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Humans
;
Blood Platelets/drug effects*
;
Apolipoproteins E/deficiency*
;
Thrombospondin 1/metabolism*
;
CD36 Antigens/metabolism*
;
Platelet Activation/drug effects*
;
Male
;
Mice
;
Mice, Inbred C57BL
6.Effect of Acupuncture on Clinical Symptoms of Patients with Intractable Facial Paralysis: A Multicentre, Randomized, Controlled Trial.
Hong-Yu XIE ; Ze-Hua WANG ; Wen-Jing KAN ; Ai-Hong YUAN ; Jun YANG ; Min YE ; Jie SHI ; Zhen LIU ; Hong-Mei TONG ; Bi-Xiang CHA ; Bo LI ; Xu-Wen YUAN ; Chao ZHOU ; Xiao-Jun LIU
Chinese journal of integrative medicine 2025;31(9):773-781
OBJECTIVE:
To evaluate the clinical effect and safety of acupuncture manipulation on treatment of intractable facial paralysis (IFP), and verify the practicality and precision of the Anzhong Facial Paralysis Precision Scale (Eyelid Closure Grading Scale, AFPPS-ECGS).
METHODS:
A multicentre, single-blind, randomized controlled trial was conducted from October 2022 to June 2024. Eighty-nine IFP participants were randomly assigned to an ordinary acupuncture group (OAG, 45 cases) and a characteristic acupuncture group (CAG, 44 cases) using a random number table method. The main acupoints selected included Yangbai (GB 14), Quanliao (SI 18), Yingxiang (LI 20), Shuigou (GV 26), Dicang (ST 4), Chengjiang (CV 24), Taiyang (EX-HN 5), Jiache (ST 6), Fengchi (GB 20), and Hegu (LI 4). The OAG patients received ordinary acupuncture manipulation, while the CAG received characteristic acupuncture manipulation. Both groups received acupuncture treatment 3 times a week, with 10 times per course, lasting for 10 weeks. Facial recovery was assessed at baseline and after the 1st, 2nd and 3rd treatment course by AFPPS-ECGS and the House-Brackmann (H-B) Grading Scale. Infrared thermography technology was used to observe the temperature difference between healthy and affected sides in various facial regions. Adverse events and laboratory test abnormalities were recorded. The correlation between the scores of the two scales was analyzed using Pearson correlation coefficient.
RESULTS:
After the 2nd treatment course, the two groups showed statistically significant differences in AFPPS-ECGS scores (P<0.05), with even greater significance after the 3rd course (P<0.01). Similarly, H-B Grading Scale scores demonstrated significant differences between groups following the 3rd treatment course (P<0.05). Regarding temperature measurements, significant differences in temperatures of frontal and ocular areas were observed after the 2nd course (P<0.05), becoming more pronounced after the 3rd course (P<0.01). Additionally, mouth corner temperature differences reached statistical significance by the 3rd course (P<0.05). No safety-related incidents were observed during the study. Correlation analysis revealed that the AFPPS-ECGS and the H-B Grading Scale were strongly correlated (r=0.86, 0.91, 0.93, and 0.91 at baseline, and after 1st, 2nd, and 3rd treatment course, respectively, all P<0.01).
CONCLUSIONS
Acupuncture is an effective treatment for IFP, and the characteristic acupuncture manipulation enhances the therapeutic effect. The use of the AFPPS-ECGS can more accurately reflect the recovery status of patients with IFP. (Trial registration No. ChiCTR2200065442).
Humans
;
Acupuncture Therapy/methods*
;
Facial Paralysis/therapy*
;
Female
;
Male
;
Middle Aged
;
Adult
;
Treatment Outcome
;
Acupuncture Points
;
Aged
7.Hippocampal Extracellular Matrix Protein Laminin β1 Regulates Neuropathic Pain and Pain-Related Cognitive Impairment.
Ying-Chun LI ; Pei-Yang LIU ; Hai-Tao LI ; Shuai WANG ; Yun-Xin SHI ; Zhen-Zhen LI ; Wen-Guang CHU ; Xia LI ; Wan-Neng LIU ; Xing-Xing ZHENG ; Fei WANG ; Wen-Juan HAN ; Jie ZHANG ; Sheng-Xi WU ; Rou-Gang XIE ; Ceng LUO
Neuroscience Bulletin 2025;41(12):2127-2147
Patients suffering from nerve injury often experience exacerbated pain responses and complain of memory deficits. The dorsal hippocampus (dHPC), a well-defined region responsible for learning and memory, displays maladaptive plasticity upon injury, which is assumed to underlie pain hypersensitivity and cognitive deficits. However, much attention has thus far been paid to intracellular mechanisms of plasticity rather than extracellular alterations that might trigger and facilitate intracellular changes. Emerging evidence has shown that nerve injury alters the microarchitecture of the extracellular matrix (ECM) and decreases ECM rigidity in the dHPC. Despite this, it remains elusive which element of the ECM in the dHPC is affected and how it contributes to neuropathic pain and comorbid cognitive deficits. Laminin, a key element of the ECM, consists of α-, β-, and γ-chains and has been implicated in several pathophysiological processes. Here, we showed that peripheral nerve injury downregulates laminin β1 (LAMB1) in the dHPC. Silencing of hippocampal LAMB1 exacerbates pain sensitivity and induces cognitive dysfunction. Further mechanistic analysis revealed that loss of hippocampal LAMB1 causes dysregulated Src/NR2A signaling cascades via interaction with integrin β1, leading to decreased Ca2+ levels in pyramidal neurons, which in turn orchestrates structural and functional plasticity and eventually results in exaggerated pain responses and cognitive deficits. In this study, we shed new light on the functional capability of hippocampal ECM LAMB1 in the modulation of neuropathic pain and comorbid cognitive deficits, and reveal a mechanism that conveys extracellular alterations to intracellular plasticity. Moreover, we identified hippocampal LAMB1/integrin β1 signaling as a potential therapeutic target for the treatment of neuropathic pain and related memory loss.
Animals
;
Laminin/genetics*
;
Hippocampus/metabolism*
;
Neuralgia/metabolism*
;
Cognitive Dysfunction/etiology*
;
Male
;
Peripheral Nerve Injuries/metabolism*
;
Extracellular Matrix/metabolism*
;
Integrin beta1/metabolism*
;
Pyramidal Cells/metabolism*
;
Signal Transduction
8.Association between ABO Blood Types and the Risk of Gestational Diabetes Mellitus: A Prospective Cohort Study.
Shuang Hua XIE ; Shuang Ying LI ; Shao Fei SU ; En Jie ZHANG ; Shen GAO ; Yue ZHANG ; Jian Hui LIU ; Min Hui HU ; Rui Xia LIU ; Wen Tao YUE ; Cheng Hong YIN
Biomedical and Environmental Sciences 2025;38(6):678-692
OBJECTIVE:
To investigate the association between ABO blood types and gestational diabetes mellitus (GDM) risk.
METHODS:
A prospective birth cohort study was conducted. ABO blood types were determined using the slide method. GDM diagnosis was based on a 75-g, 2-h oral glucose tolerance test (OGTT) according to the criteria of the International Association of Diabetes and Pregnancy Study Groups. Logistic regression was applied to calculate the odds ratios ( ORs) and 95% confidence intervals ( CIs) between ABO blood types and GDM risk.
RESULTS:
A total of 30,740 pregnant women with a mean age of 31.81 years were enrolled in this study. The ABO blood types distribution was: type O (30.99%), type A (26.58%), type B (32.20%), and type AB (10.23%). GDM was identified in 14.44% of participants. Using blood type O as a reference, GDM risk was not significantly higher for types A ( OR = 1.05) or B ( OR = 1.04). However, women with type AB had a 19% increased risk of GDM ( OR = 1.19, 95% CI = 1.05-1.34; P < 0.05), even after adjusting for various factors. This increased risk for type AB was consistent across subgroup and sensitivity analyses.
CONCLUSION
The ABO blood types may influence GDM risk, with type AB associated with a higher risk. Incorporating it-either as a single risk factor or in combination with other known factors-could help identify individuals at risk for GDM before or during early pregnancy.
Humans
;
Female
;
Pregnancy
;
Diabetes, Gestational/etiology*
;
ABO Blood-Group System
;
Adult
;
Prospective Studies
;
Risk Factors
;
Young Adult
9.A Retrospective Study of Pregnancy and Fetal Outcomes in Mothers with Hepatitis C Viremia.
Wen DENG ; Zi Yu ZHANG ; Xin Xin LI ; Ya Qin ZHANG ; Wei Hua CAO ; Shi Yu WANG ; Xin WEI ; Zi Xuan GAO ; Shuo Jie WANG ; Lin Mei YAO ; Lu ZHANG ; Hong Xiao HAO ; Xiao Xue CHEN ; Yuan Jiao GAO ; Wei YI ; Yao XIE ; Ming Hui LI
Biomedical and Environmental Sciences 2025;38(7):829-839
OBJECTIVE:
To investigate chronic hepatitis C virus (HCV) infection's effect on gestational liver function, pregnancy and delivery complications, and neonatal development.
METHODS:
A total of 157 HCV antibody-positive (anti-HCV[+]) and HCV RNA(+) patients (Group C) and 121 anti-HCV(+) and HCV RNA(-) patients (Group B) were included as study participants, while 142 anti-HCV(-) and HCV RNA(-) patients (Group A) were the control group. Data on biochemical indices during pregnancy, pregnancy complications, delivery-related information, and neonatal complications were also collected.
RESULTS:
Elevated alanine aminotransferase (ALT) rates in Group C during early, middle, and late pregnancy were 59.87%, 43.95%, and 42.04%, respectively-significantly higher than Groups B (26.45%, 15.70%, 10.74%) and A (23.94%, 19.01%, 6.34%) ( P < 0.05). Median ALT levels in Group C were significantly higher than in Groups A and B at all pregnancy stages ( P < 0.05). No significant differences were found in neonatal malformation rates across groups ( P > 0.05). However, neonatal jaundice incidence was significantly greater in Group C (75.16%) compared to Groups A (42.25%) and B (57.02%) ( χ 2 = 33.552, P < 0.001). HCV RNA positivity during pregnancy was an independent risk factor for neonatal jaundice ( OR = 2.111, 95% CI 1.242-3.588, P = 0.006).
CONCLUSIONS
Chronic HCV infection can affect the liver function of pregnant women, but does not increase the pregnancy or delivery complication risks. HCV RNA(+) is an independent risk factor for neonatal jaundice.
Humans
;
Female
;
Pregnancy
;
Adult
;
Pregnancy Complications, Infectious/epidemiology*
;
Retrospective Studies
;
Pregnancy Outcome
;
Infant, Newborn
;
Viremia/virology*
;
Hepatitis C
;
Hepacivirus/physiology*
;
Hepatitis C, Chronic/virology*
;
Young Adult
;
Alanine Transaminase/blood*
10.Construction and characterization of lpxC deletion strain based on CRISPR/Cas9 in Acinetobacter baumannii
Zong-ti SUN ; You-wen ZHANG ; Hai-bin LI ; Xiu-kun WANG ; Jie YU ; Jin-ru XIE ; Peng-bo PANG ; Xin-xin HU ; Tong-ying NIE ; Xi LU ; Jing PANG ; Lei HOU ; Xin-yi YANG ; Cong-ran LI ; Lang SUN ; Xue-fu YOU
Acta Pharmaceutica Sinica 2024;59(5):1286-1294
Lipopolysaccharides (LPS) are major outer membrane components of Gram-negative bacteria. Unlike most Gram-negative bacteria,

Result Analysis
Print
Save
E-mail