1.Xiaozhong Zhitong Mixture(消肿止痛合剂)Combined with Antibiotic Bone Cement in the Treatment of Diabetic Foot Ulcers with Damp-Heat Obstructing Syndrome:A Randomized Controlled Trial of 35 Patients
Xiaotao WEI ; Zhijun HE ; Tao LIU ; Zhenxing JIANG ; Fei LI ; Yan LI ; Jinpeng LI ; Wen CHEN ; Bihui BAI ; Xuan DONG ; Bo SUN
Journal of Traditional Chinese Medicine 2025;66(7):704-709
ObjectiveTo observe the clinical effectiveness and safety of Xiaozhong Zhitong Mixture (消肿止痛合剂) combined with antibiotic bone cement in the treatment of diabetic foot ulcer (DFU) with damp-heat obstructing syndrome. MethodsA total of 72 DFU patients with damp-heat obstructing syndrome were randomly assigned to treatment group (36 cases) and the control group (36 cases). Both groups received standard treatment and topical antibiotic bone cement for ulcer wounds, while the treatment group received oral Xiaozhong Zhitong Mixture (50 ml per time, three times daily) in additionally. Both groups underwent daily wound dressing changes for 21 consecutive days. Ulcer healing rate, serum levels of tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), malondialdehyde (MDA), superoxide dismutase (SOD), C-reactive protein (CRP), and white blood cell (WBC) count were observed before and after treatment, and visual analog scale (VAS) scores for wound pain, traditional Chinese medicine (TCM) syndrome scores, and the DFU Healing Scale (DMIST scale) were also compared. Liver and kidney function were evaluated before and after treatment, and adverse events such as allergic reactions, worsening ulcer pain were recorded. ResultsTotally 35 patients in the treatment group and 33 in the control group were included in the final analysis. The ulcer healing rate in the treatment group was (87.93±9.34)%, significantly higher than (81.82±12.02)% in the control group (P = 0.035). Compared to pre-treatment levels, both groups showed significant reductions in serum CRP, WBC, MDA, IL-1β, and TNF-α levels, with an increase in SOD level (P<0.05). TCM syndrome scores, VAS, and DMIST scores also significantly decreased in both groups (P<0.05), with greater improvements in the treatment group (P<0.05). No significant adverse reactions were observed in either group during treatment. ConclusionXiaozhong Zhitong Mixture combined with antibiotic bone cement has significant advantages in promoting DFU healing, reducing inflammatory response, and alleviating oxidative stress in DFU patients with damp-heat obstructing syndrome, with good safety for DFU patients with damp-heat obstructing syndrome.
2.Research on the effectiveness of health information dissemination via the “Shanghai CDC” WeChat public account
Ying GUO ; Xiaoxuan WANG ; Wen XIA ; Xiaoyan HUANG ; Xuanmeng HU ; Qi SHEN ; Chen DONG
Shanghai Journal of Preventive Medicine 2025;37(2):179-183
ObjectiveTo explore the effectiveness of health information dissemination and its influencing factors using the "Shanghai CDC" WeChat public account as a case study, providing references for public health institutions to optimize the use of official new media platforms for effective publicity. MethodsA total of 1 030 headline articles published on the "Shanghai CDC" WeChat public account between 2016 and 2019 were analyzed using content analysis and non-parametric tests to examine the impact of factors such as titles and content categories. ResultsFrom 2016 to 2019, the number of WeChat public account followers increased by 280 000, with the articles accumulating over 8.8 million views. The median (P25, P75) open rate of articles was 5.90% (3.69%, 10.31%), and the median (P25, P75) sharing and forwarding rate was 6.60% (4.25%, 9.17%). Factors such as the use of first- and second-person pronouns, degree adverbs, negative adverbs, explicit viewpoints, and title length all significantly affected the open rate of articles, with OR (95%CI) values of 0.175 (0.041‒0.756), 32.606 (2.350‒452.432), 4.079 (1.093‒15.230), 0.106 (0.028‒0.409), and 1.184 (1.063‒1.319),respectively (all P<0.05). In terms of content, statistical significant differences in dissemination effectiveness were observed across article categories and themes (P<0.05). In terms of article categories, articles related to news hotspots and service information had higher open rates of 9.58% and 14.00%, respectively. These two types of articles also obtained higher sharing and forwarding rates of 7.65% and 9.16%, respectively. In terms of article topics, compared with healthy life and health products, among the top four topics in terms of publication volume, the open rates of articles about infectious diseases and disease-causing biology and immunization programs were higher, accounting for 7.88% and 6.88%, respectively, with no significant difference in sharing and forwarding rates. ConclusionThe "Shanghai CDC" WeChat public account demonstrated good dissemination effectiveness. Enhancing article titles by increasing informational content and degree adverbs (e.g., "highly," "most," and "extremely") and negative adverbs (e.g., "no") can improve dissemination reach. Public health WeChat accounts should incorporate news hotspots or service information in their articles. While maintaining their strengths in disseminating knowledge on infectious diseases and immunization programs, they should also enhance public education in other professional fields within their scope of responsibility to improve the overall dissemination impact of health information.
3.Comorbidity and associated factors of overweight/obesity and dental caries among primary and secondary school students in Guangxi
LUO Yuemei, REN Yiwen, CHEN Li, DONG Yonghui, YUAN Wen, MA Jun, DONG Yanhui, LI Yan, ZHOU Weiwen
Chinese Journal of School Health 2025;46(4):485-488
Objective:
To explore the comorbidity and associated factors of dental caries and overweight/obesity among primary and secondary school students in Guangxi, so as to provide a scientific basis for the development of targeted prevention strategies.
Methods:
A stratified cluster random sampling method was used to survey 178 700 students from the fourth grade of primary school to the third year of high school in Guangxi Zhuang Autonomous Region from September to November 2023, including physical examination, oral screening, and questionnaire survey. Chisquare tests and binary Logistic regression analysis were employed to investigate the related factors of the cooccurrence of dental caries and overweight/obesity among students.
Results:
The comorbidity rate of dental caries and overweight/obesity was 9.55%, with urban areas (9.95%) higher than rural counties (9.24%), boys (10.54%) higher than girls (8.54%), primary school students (11.49%) higher than senior high school students (8.92%) and junior high school students (8.05%), and nonboarding students (11.44%) higher than boarding students (7.94%), and all differences were statistically significant (χ2=26.07, 207.91, 471.54, 629.14,P<0.01). Multivariate Logistic regression analysis showed that consuming cereal for breakfast (OR=0.91, 95%CI=0.88-0.94), drinking milk in the past week (OR=0.89, 95%CI=0.83-0.95), meeting sleep standards (OR=0.95, 95%CI=0.91-0.99), and brushing teeth at least once a day (OR=0.82, 95%CI=0.73-0.93) had a lower risk of the comorbidity of dental caries and overweight/obesity. In contrast, drinking beverages in the past week (OR=1.14, 95%CI=1.09-1.20), consuming fried foods in the past week (OR=1.11, 95%CI=1.06-1.17), eating fruit ≥1 time every day (OR=1.06, 95%CI=1.02-1.11), consuming fruit ≥1 type every day (OR=1.07, 95%CI=1.01-1.12), and having fish, poultry, meat, or eggbased breakfasts (OR=1.03, 95%CI=1.05-1.13) had a higher risk of the comorbidity of dental caries and overweight/obesity (P<0.05).
Conclusions
Dietary habits and lifestyle behaviors are associated with the comorbidity of dental caries and overweight/obesity among primary and secondary school students in Guangxi. Guiding students to form healthy living habits is helpful to preven dental caries and overweight/obesity.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.A new classification of atlas fracture based on computed tomography: reliability, reproducibility, and preliminary clinical significance
Yun-lin CHEN ; Wei-yu JIANG ; Wen-jie LU ; Xu-dong HU ; Yang WANG ; Wei-hu MA
Asian Spine Journal 2025;19(1):3-9
Methods:
Seventy-five patients with atlas fracture were included from January 2015 to December 2020. Based on the anatomy of the fracture line, atlas fractures were divided into three types. Each type was divided into two subtypes according to the fracture displacement. Unweighted Cohen kappa coefficients were applied to evaluate the reliability and reproducibility.
Results:
According to the new classification, 17 cases of type A1, 12 of type A2, seven of type B1, 13 of type B2, 12 of type C1, and 14 of type C2 were identified. The K-values of the interobserver and intraobserver reliability were 0.846 and 0.912, respectively, for the new classification. The K-values of interobserver reliability for types A, B, and C were 0.843, 0.799, and 0.898, respectively. The K-values of intraobserver reliability for types A, B, and C were 0.888, 0.910, and 0.935, respectively. The mean K-values of the interobserver and intraobserver reliability for subtypes were 0.687 and 0.829, respectively.
Conclusions
The new classification of atlas fractures can cover nearly all atlas fractures. This system is the first to evaluate the severity of fractures based on the C1 articular facet and fracture displacement and strengthen the anatomy ring of the atlas. It is concise, easy to remember, reliable, and reproducible.
6.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
7.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
8.A new classification of atlas fracture based on computed tomography: reliability, reproducibility, and preliminary clinical significance
Yun-lin CHEN ; Wei-yu JIANG ; Wen-jie LU ; Xu-dong HU ; Yang WANG ; Wei-hu MA
Asian Spine Journal 2025;19(1):3-9
Methods:
Seventy-five patients with atlas fracture were included from January 2015 to December 2020. Based on the anatomy of the fracture line, atlas fractures were divided into three types. Each type was divided into two subtypes according to the fracture displacement. Unweighted Cohen kappa coefficients were applied to evaluate the reliability and reproducibility.
Results:
According to the new classification, 17 cases of type A1, 12 of type A2, seven of type B1, 13 of type B2, 12 of type C1, and 14 of type C2 were identified. The K-values of the interobserver and intraobserver reliability were 0.846 and 0.912, respectively, for the new classification. The K-values of interobserver reliability for types A, B, and C were 0.843, 0.799, and 0.898, respectively. The K-values of intraobserver reliability for types A, B, and C were 0.888, 0.910, and 0.935, respectively. The mean K-values of the interobserver and intraobserver reliability for subtypes were 0.687 and 0.829, respectively.
Conclusions
The new classification of atlas fractures can cover nearly all atlas fractures. This system is the first to evaluate the severity of fractures based on the C1 articular facet and fracture displacement and strengthen the anatomy ring of the atlas. It is concise, easy to remember, reliable, and reproducible.
9.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
10.A new classification of atlas fracture based on computed tomography: reliability, reproducibility, and preliminary clinical significance
Yun-lin CHEN ; Wei-yu JIANG ; Wen-jie LU ; Xu-dong HU ; Yang WANG ; Wei-hu MA
Asian Spine Journal 2025;19(1):3-9
Methods:
Seventy-five patients with atlas fracture were included from January 2015 to December 2020. Based on the anatomy of the fracture line, atlas fractures were divided into three types. Each type was divided into two subtypes according to the fracture displacement. Unweighted Cohen kappa coefficients were applied to evaluate the reliability and reproducibility.
Results:
According to the new classification, 17 cases of type A1, 12 of type A2, seven of type B1, 13 of type B2, 12 of type C1, and 14 of type C2 were identified. The K-values of the interobserver and intraobserver reliability were 0.846 and 0.912, respectively, for the new classification. The K-values of interobserver reliability for types A, B, and C were 0.843, 0.799, and 0.898, respectively. The K-values of intraobserver reliability for types A, B, and C were 0.888, 0.910, and 0.935, respectively. The mean K-values of the interobserver and intraobserver reliability for subtypes were 0.687 and 0.829, respectively.
Conclusions
The new classification of atlas fractures can cover nearly all atlas fractures. This system is the first to evaluate the severity of fractures based on the C1 articular facet and fracture displacement and strengthen the anatomy ring of the atlas. It is concise, easy to remember, reliable, and reproducible.


Result Analysis
Print
Save
E-mail