1.Isoliquiritigenin alleviates abnormal endoplasmic reticulum stress induced by type 2 diabetes mellitus
Kai-yi LAI ; Wen-wen DING ; Jia-yu ZHANG ; Xiao-xue YANG ; Wen-bo GAO ; Yao XIAO ; Ying LIU
Acta Pharmaceutica Sinica 2025;60(1):130-140
Isoliquiritigenin (ISL) is a chalcone compound isolated from licorice, known for its anti-diabetic, anti-cancer, and antioxidant properties. Our previous study has demonstrated that ISL effectively lowers blood glucose levels in type 2 diabetes mellitus (T2DM) mice and improves disturbances in glucolipid and energy metabolism induced by T2DM. This study aims to further investigate the effects of ISL on alleviating abnormal endoplasmic reticulum stress (ERS) caused by T2DM and to elucidate its molecular mechanisms.
2.The Mesencephalic Locomotor Region for Locomotion Control
Xing-Chen GUO ; Yan XIE ; Xin-Shuo WEI ; Wen-Fen LI ; Ying-Yu SUN
Progress in Biochemistry and Biophysics 2025;52(7):1804-1816
Locomotion, a fundamental motor function encompassing various forms such as swimming, walking, running, and flying, is essential for animal survival and adaptation. The mesencephalic locomotor region (MLR), located at the midbrain-hindbrain junction, is a conserved brain area critical for controlling locomotion. This review highlights recent advances in understanding the MLR’s structure and function across species, from lampreys to mammals and birds, with a particular focus on insights gained from optogenetic studies in mammals. The goal is to uncover universal strategies for MLR-mediated locomotor control. Electrical stimulation of the MLR in species such as lampreys, salamanders, cats, and mice initiates locomotion and modulates speed and patterns. For example, in lampreys, MLR stimulation induces swimming, with increased intensity or frequency enhancing propulsive force. Similarly, in salamanders, graded stimulation transitions locomotor outputs from walking to swimming. Histochemical studies reveal that effective MLR stimulation sites colocalize with cholinergic neurons, suggesting a conserved neurochemical basis for locomotion control. In mammals, the MLR comprises two key nuclei: the cuneiform nucleus (CnF) and the pedunculopontine nucleus (PPN). Both nuclei contain glutamatergic and GABAergic neurons, with the PPN additionally housing cholinergic neurons. Optogenetic studies in mice by selectively activating glutamatergic neurons have demonstrated that the CnF and PPN play distinct roles in motor control: the CnF drives rapid escape behaviors, while the PPN regulates slower, exploratory movements. This functional specialization within the MLR allows animals to adapt their locomotion patterns and speed in response to environmental demands and behavioral objectives. Similar to findings in lampreys, the CnF and PPN in mice transmit motor commands to spinal effector circuits by modulating the activity of brainstem reticular formation neurons. However, they achieve this through distinct reticulospinal pathways, enabling the generation of specific behaviors. Further insights from monosynaptic rabies viral tracing reveal that the CnF and PPN integrate inputs from diverse brain regions to produce context-appropriate behaviors. For instance, glutamatergic neurons in the PPN receive signals from other midbrain structures, the basal ganglia, and medullary nuclei, whereas glutamatergic neurons in the CnF rarely receive inputs from the basal ganglia but instead are strongly influenced by the periaqueductal grey and inferior colliculus within the midbrain. These differential connectivity patterns underscore the specialized roles of the CnF and PPN in motor control, highlighting their unique contributions to coordinating locomotion. Birds exhibit exceptional flight capabilities, yet the avian MLR remains poorly understood. Comparative studies suggest that the pedunculopontine tegmental nucleus (PPTg) in birds is homologous to the mammalian PPN, which contains cholinergic neurons, while the intercollicular nucleus (ICo) or nucleus isthmi pars magnocellularis (ImC) may correspond to the CnF. These findings provide important clues for identifying the avian MLR and elucidating its role in flight control. However, functional validation through targeted experiments is urgently needed to confirm these hypotheses. Optogenetics and other advanced techniques in mice have greatly advanced MLR research, enabling precise manipulation of specific neuronal populations. Future studies should extend these methods to other species, particularly birds, to explore unique locomotor adaptations. Comparative analyses of MLR structure and function across species will deepen our understanding of the conserved and evolved features of motor control, revealing fundamental principles of locomotion regulation throughout evolution. By integrating findings from diverse species, we can uncover how the MLR has been adapted to meet the locomotor demands of different environments, from aquatic to aerial habitats.
3.Eccentric treadmill exercise promotes adaptive hypertrophy of gastrocnemius in rats.
Zhi-Qiang DAI ; Yu KE ; Yan ZHAO ; Ying YANG ; Hui-Wen WU ; Hua-Yu SHANG ; Zhi XIA
Acta Physiologica Sinica 2025;77(3):449-464
The present study aimed to investigate the effects of eccentric treadmill exercise on adaptive hypertrophy of skeletal muscle in rats. Thirty-two 3-month-old Sprague Dawley (SD) rats were selected and randomly assigned to one of the four groups based on their body weights: 2-week quiet control group (2C), 2-week downhill running exercise group (2E), 4-week quiet control group (4C), and 4-week downhill running exercise group (4E). The downhill running protocol for rats in the exercise groups involved slope of -16°, running speed of 16 m/min, training duration of 90 min, and 5 training sessions per week. Twenty-four hours after the final session of training, all the four groups of rats underwent an exhaustion treadmill exercise. After resting for 48 h, all the rats were euthanized and their gastrocnemius muscles were harvested for analysis. HE staining was used to measure the cross-sectional area (CSA) and diameter of muscle fibers. Transmission electron microscope was used to observe the ultrastructural changes in muscle fibers. Purithromycin surface labeling translation method was used to measure protein synthesis rate. Immunofluorescence double labeling was used to detect the colocalization levels of lysosomal-associated membrane protein 2 (Lamp2)-leucyl-tRNA synthetase (LARS) and Lamp2-mammalian target of rapamycin (mTOR). Western blot was used to measure the protein expression levels of myosin heavy chain (MHC) IIb and LARS, as well as the phosphorylation levels of mTOR, p70 ribosomal protein S6 kinase (p70S6K), and eukaryotic translation initiation factor 4E binding protein 1 (4E-BP1). The results showed that, compared with the 2C group rats, the 2E group rats showed significant increases in wet weight of gastrocnemius muscle, wet weight/body weight ratio, running distance, running time, pre- and post-exercise blood lactate levels, myofibrillar protein content, colocalization levels of Lamp2-LARS and Lamp2-mTOR, and LARS protein expression. Besides these above changes, compared with the 4C group, the 4E group further exhibited significantly increased fiber CSA, fiber diameter, protein synthesis rate, and phosphorylation levels of mTOR, p70S6K, and 4E-BP1. Compared with the quiet control groups, the exercise groups exhibited ultrastructural damage of rat gastrocnemius muscle, which was more pronounced in the 4E group. These findings suggest that eccentric treadmill exercise may promote mTOR translocation to lysosomal membrane, activating mTOR signaling via up-regulating LARS expression. This, in turn, increases protein synthesis rate through the mTOR-p70S6K-4E-BP1 signaling pathway, promoting protein deposition and inducing adaptive skeletal muscle hypertrophy. Although the ultrastructural changes of skeletal muscle are more pronounced, the relatively long training cycles during short-term exercise periods have a more significant effect on promoting gastrocnemius muscle protein synthesis and adaptive hypertrophy.
Animals
;
Rats, Sprague-Dawley
;
Physical Conditioning, Animal/physiology*
;
Rats
;
Muscle, Skeletal/metabolism*
;
TOR Serine-Threonine Kinases/metabolism*
;
Male
;
Hypertrophy
;
Adaptation, Physiological/physiology*
;
Adaptor Proteins, Signal Transducing/metabolism*
;
Ribosomal Protein S6 Kinases, 70-kDa/metabolism*
;
Intracellular Signaling Peptides and Proteins
4.Identification of GSK3 family and regulatory effects of brassinolide on growth and development of Nardostachys jatamansi.
Yu-Yan LEI ; Zheng MA ; Jing WEI ; Wen-Bing LI ; Ying LI ; Zheng-Ming YANG ; Shao-Shan ZHANG ; Jing-Qiu FENG ; Hua-Chun SHENG ; Yuan LIU
China Journal of Chinese Materia Medica 2025;50(2):395-403
This study identified 8 members including NjBIN2 of the GSK3 family in Nardostachys jatamansi by bioinformatics analysis. Moreover, the phylogenetic tree revealed that the GKS3 family members of N. jatamansi had a close relationship with those of Arabidopsis. RT-qPCR results showed that NjBIN2 presented a tissue-specific expression pattern with the highest expression in roots, suggesting that NjBIN2 played a role in root growth and development. In addition, the application of epibrassinolide or the brassinosteroid(BR) synthesis inhibitor(brassinazole) altered the expression pattern of NjBIN2 and influenced the photomorphogenesis(cotyledon opening) and root development of N. jatamansi, which provided direct evidence about the functions of NjBIN2. In conclusion, this study highlights the roles of BIN2 in regulating the growth and development of N. jatamansi by analyzing the expression pattern and biological function of NjBIN2. It not only enriches the understanding about the regulatory mechanism of the growth and development of N. jatamansi but also provides a theoretical basis and potential gene targets for molecular breeding of N. jatamansi with improved quality in the future.
Brassinosteroids/metabolism*
;
Steroids, Heterocyclic/metabolism*
;
Gene Expression Regulation, Plant/drug effects*
;
Plant Proteins/metabolism*
;
Phylogeny
;
Nardostachys/metabolism*
;
Plant Growth Regulators/pharmacology*
;
Plant Roots/drug effects*
5.Pharmacokinetics and anti-inflammatory activity of cannabidiol/ γ-polyglutamic acid-g-cholesterol nanomicelles.
Rui LI ; Li-Yan LU ; Chu XU ; Rui HAO ; Xiao YU ; Rui GUO ; Jue CHEN ; Wen-Hui RUAN ; Ying-Li WANG
China Journal of Chinese Materia Medica 2025;50(2):534-541
In this study, the pharmacokinetic characteristics and tissue distribution of cannabidiol(CBD)/γ-polyglutamic acid-g-cholesterol(γ-PGA-g-CHOL) nanomicelles [CBD/(γ-PGA-g-CHOL)NMs] were investigated by pharmacokinetic experiments, and the effect of CBD/(γ-PGA-g-CHOL)NMs on the lipopolysaccharide(LPS)-induced inflammatory damage of cells was evaluated by cell experiments. CBD/(γ-PGA-g-CHOL)NMs were prepared by dialysis. The CBD concentrations in the plasma samples of male SD rats treated with CBD and CBD/(γ-PGA-g-CHOL)NMs were investigated, and the pharmacokinetic parameters were calculated and compared. UPLC-MS/MS was employed to determine the concentration of CBD in tissue samples. The heart, liver, spleen, lung, kidney, and muscle samples were collected at different time points to explore the tissue distribution of CBD and CBD/(γ-PGA-g-CHOL)NMs. The Caco-2 cell model of LPS-induced inflammation was established, and the cell viability, transepithelial electrical resistance(TEER), and secretion levels of inflammatory cytokines were determined to compare the anti-inflammatory activity between the two groups. The results showed that CBD/(γ-PGA-g-CHOL)NMs had the average particle size of(163.1±2.3)nm, drug loading of 8.78%±0.28%, and encapsulation rate of 84.46%±0.35%. Compared with CBD, CBD/(γ-PGA-g-CHOL)NMs showed increased peak concentration(C_(max)) and prolonged peak time(t_(max)) and mean residence time(MRT_(0-t)). Within 24 h, the tissue distribution concentration of CBD/(γ-PGA-g-CHOL)NMs was higher than that of CBD. In addition, both CBD and CBD/(γ-PGA-g-CHOL)NMs significantly enhanced Caco-2 cell viability and TEER, lowered the secretion levels of inflammatory cytokines, and alleviated inflammation. Moreover, CBD/(γ-PGA-g-CHOL)NMs demonstrated stronger anti-inflammatory effect. It can be inferred that γ-PGA-g-CHOL blank nanomicelles are good carriers of CBD, being capable of prolonging the circulation time of CBD in the blood, improving the bioavailability and tissue distribution concentration of CBD, and protecting against LPS-induced inflammatory injury. The findings can provide an experimental basis for the development and clinical application of oral CBD preparations.
Animals
;
Cannabidiol/administration & dosage*
;
Polyglutamic Acid/analogs & derivatives*
;
Humans
;
Male
;
Rats
;
Rats, Sprague-Dawley
;
Anti-Inflammatory Agents/administration & dosage*
;
Micelles
;
Caco-2 Cells
;
Cholesterol/pharmacokinetics*
;
Tissue Distribution
;
Nanoparticles/chemistry*
6.Verification of resveratrol ameliorating vascular endothelial damage in sepsis-associated encephalopathy through HIF-1α pathway based on network pharmacology and experiment.
Rong LI ; Yue WU ; Wen-Xuan ZHU ; Meng QIN ; Si-Yu SUN ; Li-Ya WANG ; Mei-Hui TIAN ; Ying YU
China Journal of Chinese Materia Medica 2025;50(4):1087-1097
This study aims to investigate the mechanism by which resveratrol(RES) alleviates cerebral vascular endothelial damage in sepsis-associated encephalopathy(SAE) through network pharmacology and animal experiments. By using network pharmacology, the study identified common targets and genes associated with RES and SAE and constructed a protein-protein interaction( PPI) network. Gene Ontology(GO) analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed to pinpoint key signaling pathways, followed by molecular docking validation. In the animal experiments, a cecum ligation and puncture(CLP) method was employed to induce SAE in mice. The mice were randomly assigned to the sham group, CLP group, and medium-dose and high-dose groups of RES. The sham group underwent open surgery without CLP, and the CLP group received an intraperitoneal injection of 0. 9% sodium chloride solution after surgery. The medium-dose and high-dose groups of RES were injected intraperitoneally with 40 mg·kg-1 and 60 mg·kg~(-1) of RES after modeling, respectively, and samples were collected 12 hours later. Neurological function scores were assessed, and the wet-dry weight ratio of brain tissue was detected. Serum superoxide dismutase(SOD), catalase( CAT) activity, and malondialdehyde( MDA) content were measured by oxidative stress kit. Histopathological changes in brain tissue were examined using hematoxylin-eosin(HE) staining. Transmission electron microscopy was employed to evaluate tight cell junctions and mitochondrial ultrastructure changes in cerebral vascular endothelium. Western blot analysis was performed to detect the expression of zonula occludens1( ZO-1), occludin, claudins-5, optic atrophy 1( OPA1), mitofusin 2(Mfn2), dynamin-related protein 1(Drp1), fission 1(Fis1), and hypoxia-inducible factor-1α(HIF-1α). Network pharmacology identified 76 intersecting targets for RES and SAE, with the top five core targets being EGFR, PTGS2, ESR1, HIF-1α, and APP. GO enrichment analysis showed that RES participated in the SAE mechanism through oxidative stress reaction. KEGG enrichment analysis indicated that RES participated in SAE therapy through HIF-1α, Rap1, and other signaling pathways. Molecular docking results showed favorable docking activity between RES and key targets such as HIF-1α. Animal experiment results demonstrated that compared to the sham group, the CLP group exhibited reduced nervous reflexes, decreased water content in brain tissue, as well as serum SOD and CAT activity, and increased MDA content. In addition, the CLP group exhibited disrupted tight junctions in cerebral vascular endothelium and abnormal mitochondrial morphology. The protein expression levels of Drp1, Fis1, and HIF-1α in brain tissue were increased, while those of ZO-1, occludin, claudin-5, Mfn2, and OPA1 were decreased. In contrast, the medium-dose and high-dose groups of RES showed improved neurological function, increased water content in brain tissue and SOD and CAT activity, and decreased MDA content. Cell morphology in brain tissue, tight junctions between endothelial cells, and mitochondrial structure were improved. The protein expressions of Drp1, Fis1, and HIF-1α were decreased, while those of ZO-1, occludin, claudin-5, Mfn2, and OPA1 were increased. This study suggested that RES could ameliorate cerebrovascular endothelial barrier function and maintain mitochondrial homeostasis by inhibiting oxidative stress after SAE damage, potentially through modulation of the HIF-1α signaling pathway.
Animals
;
Mice
;
Network Pharmacology
;
Resveratrol/administration & dosage*
;
Male
;
Sepsis-Associated Encephalopathy/genetics*
;
Signal Transduction/drug effects*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Endothelium, Vascular/metabolism*
;
Molecular Docking Simulation
;
Protein Interaction Maps/drug effects*
;
Humans
;
Sepsis/complications*
;
Oxidative Stress/drug effects*
7.Huotan Jiedu Tongluo Decoction inhibits ferroptosis by regulating Nrf2/GPX4 pathway to ameliorate atherosclerotic lesions in ApoE~(-/-) mice.
Di GAO ; Teng-Hui TIAN ; Ke-Ying YU ; Xiao SHAO ; Wen XUE ; Zhi-Xuan ZHAO ; Yue DENG
China Journal of Chinese Materia Medica 2025;50(7):1908-1919
The purpose of this study was to clarify the effect of Huotan Jiedu Tongluo Decoction on atherosclerosis(AS) injury in ApoE~(-/-) mice by regulating the ferroptosis pathway. Seventy-five ApoE~(-/-) mice were randomly divided into model group, low-, medium-, and high-dose of Huotan Jiedu Tongluo Decoction groups, and evolocumab group(n=15), and 15 C57BL/6J mice were selected as the blank group. Mice in the blank group were fed with a normal diet, and those in the other groups were fed with a high-fat diet to induce AS. From the 9th week, mice in Huotan Jiedu Tongluo Decoction groups were administrated with Huotan Jiedu Tongluo Decoction at corresponding doses by gavage, and those in the blank group and the model group were given an equal volume of distilled water. Mice in the evolocumab group were treated with evolocumab 18.2 mg·kg~(-1 )by subcutaneous injection every 2 weeks. After 8 weeks of continuous intervention, oil red O staining and hematoxylin-eosin(HE) staining were employed to observe the lipid deposition and plaque formation in the aortic root. Masson staining was used to evaluate the collagen content in the aortic root. The serum levels of total cholesterol(TC), triglycerides(TG), high-density lipoprotein cholesterol(HDL-C), and low-density lipoprotein cholesterol(LDL-C) were determined by biochemical kits. The levels of Fe~(2+), superoxide dismutase(SOD), malondialdehyde(MDA), and glutathione(GSH) in the aorta were measured by colorimetry. The protein and mRNA levels of nuclear factor erythroid 2-related factor 2(Nrf2), glutathione peroxidase 4(GPX4), solute carrier family 7 member 11(SLC7A11), and acyl-CoA synthetase long chain family member 4(ACSL4) in the aorta were detected by Western blot and RT-qPCR, respectively. The expression of Nrf2, GPX4, and SLC7A11 was localized by immunofluorescence. The results showed that low-, medium-, and high-dose Huotan Jiedu Tongluo Decoction reduced the plaque formation of aortic root and increased the collagen content in AS mice. At the same time, Huotan Jiedu Tongluo Decoction improved the lipid metabolism by lowering the levels of TC, LDL-C, and TG and elevating the level of HDL-C in the serum. Huotan Jiedu Tongluo Decoction enhanced the antioxidant capacity by elevating the levels of GSH and SOD and lowering the level of MDA in the aorta and inhibiting the accumulation of Fe~(2+) in the aorta. In addition, Huotan Jiedu Tongluo Decoction up-regulated the protein and mRNA levels of Nrf2, GPX4, and SLC7A11, while down-regulating the protein and mRNA levels of ACSL4. In summary, Huotan Jiedu Tongluo Decoction can effectively alleviate AS lesions in ApoE~(-/-) mice by activating the Nrf2/GPX4 pathway, reducing lipid peroxidation, and inhibiting ferroptosis.
Animals
;
Ferroptosis/drug effects*
;
Atherosclerosis/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
NF-E2-Related Factor 2/genetics*
;
Mice
;
Mice, Inbred C57BL
;
Apolipoproteins E/metabolism*
;
Male
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Signal Transduction/drug effects*
;
Humans
;
Mice, Knockout
8.A preliminary study on the vertical traction weight of cervical kyphosis treated by bidirectional cervical traction.
Hai-Lian CHEN ; Yu-Ming ZHANG ; Wen-Jie ZHANG ; Yan-Ying HUANG ; Yong ZHANG
China Journal of Orthopaedics and Traumatology 2025;38(8):822-827
OBJECTIVE:
To explore the optimal vertical traction weight, clinical efficacy, and safety of bidirectional cervical traction in the treatment of cervical kyphosis.
METHODS:
A total of 130 patients with neck pain and cervical kyphosis confirmed by cervical DR who visited the hospital from April 2023 to April 2024 were enrolled. They were divided into 4 groups according to the vertical traction weight accounting for 5%, 10%, 15%, and 20% of their body weight, respectively. The 5% body weight traction group included 33 cases (13 males and 20 females) with an average age of (34.00±10.58) years old;the 10% body weight traction group included 35 cases (17 males and 18 females) with an average age of (32.23±8.39) years old;the 15% body weight traction group included 32 cases (14 males and 18 females) with an average age of (33.88±10.09) years old;the 20% body weight traction group included 30 cases (11 males and 19 females) with an average age of (36.20±9.13) years old. Each group received treatment for 2 weeks. The visual analogue scale (VAS) score, neck disability index (NDI), and C2-C7 Cobb angle on cervical lateral X-ray films before and after treatment were recorded to evaluate the clinical efficacy of the 4 groups.
RESULTS:
When the traction weight was 10% and 15% of body weight, the pain VAS and NDI were significantly improved, and the C2-C7 Cobb angle increased, with statistically significant differences (P<0.05), and no adverse reactions occurred. However, in the 5% body weight group, the above indicators showed no significant changes, with no statistically significant differences (P>0.05). In the 20% body weight group, some patients could not tolerate the treatment, and adverse reactions such as dizziness, nausea, and aggravated neck pain occurred.
CONCLUSION
The optimal vertical traction weight of bidirectional cervical traction for cervical kyphosis is 10%-15% of body weight, which can effectively improve neck pain and cervical function, increase the C2-C7 Cobb angle of the cervical spine, with high safety, and is worthy of promotion and application.
Humans
;
Male
;
Female
;
Traction/methods*
;
Kyphosis/physiopathology*
;
Adult
;
Cervical Vertebrae/physiopathology*
;
Middle Aged
;
Neck Pain
;
Young Adult
9.Targeted gene silencing in mouse testicular Sertoli and Leydig cells using adeno-associated virus vectors.
Jing PANG ; Mao-Xing XU ; Xiao-Yu WANG ; Xu FENG ; Yi-Man DUAN ; Xiao-Yan ZHENG ; Yu-Qian CHEN ; Wen YIN ; Ying LIU ; Ju-Xue LI
Asian Journal of Andrology 2025;27(5):627-637
Researchers commonly use cyclization recombination enzyme/locus of X-over P1 (Cre/loxP) technology-based conditional gene knockouts of model mice to investigate the functional roles of genes of interest in Sertoli and Leydig cells within the testis. However, the shortcomings of these genetic tools include high costs, lengthy experimental periods, and limited accessibility for researchers. Therefore, exploring alternative gene silencing techniques is of great practical value. In this study, we employed adeno-associated virus (AAV) as a vector for gene silencing in Sertoli and Leydig cells. Our findings demonstrated that AAV serotypes 1, 8, and 9 exhibited high infection efficiency in both types of testis cells. Importantly, we discovered that all three AAV serotypes exhibited exquisite specificity in targeting Sertoli cells via tubular injection while demonstrating remarkable selectivity in targeting Leydig cells via interstitial injection. We achieved cell-specific knockouts of the steroidogenic acute regulatory ( Star ) and luteinizing hormone/human chorionic gonadotropin receptor (Lhcgr) genes in Leydig cells, but not in Sertoli cells, using AAV9-single guide RNA (sgRNA)-mediated gene editing in Rosa26-LSL-Cas9 mice. Knockdown of androgen receptor ( Ar ) gene expression in Sertoli cells of wild-type mice was achieved via tubular injection of AAV9-short hairpin RNA (shRNA)-mediated targeting. Our findings offer technical approaches for investigating gene function in Sertoli and Leydig cells through AAV9-mediated gene silencing.
Animals
;
Male
;
Leydig Cells/metabolism*
;
Mice
;
Dependovirus/genetics*
;
Sertoli Cells/metabolism*
;
Gene Silencing
;
Genetic Vectors
;
Testis/cytology*
10.Application of colloidal gold method and chemiluminescence method for detecting gonadotropins in morning urine to assess pubertal development status in children.
Xue-Qi ZHAO ; Wen-Li LU ; Wen-Ying LI ; Jun-Qi WANG ; Zhi-Ya DONG ; Yuan XIAO ; Xiao-Fei ZHANG ; Li JIANG ; Xiao-Yu MA
Chinese Journal of Contemporary Pediatrics 2025;27(2):199-204
OBJECTIVES:
To explore the application of the colloidal gold method and chemiluminescence method in detecting gonadotropin (Gn) in morning urine for assessing pubertal development status in children.
METHODS:
A total of 132 children diagnosed with central precocious puberty (CPP), early and fast puberty (EFP), and premature thelarche (PT) at Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine from November 2021 to December 2022 were included, along with 685 healthy children who underwent routine health examinations at the hospital's pediatric health care department during the same period. All 132 patients underwent a gonadotropin-releasing hormone (GnRH) stimulation test. Both patients and healthy children had their urinary Gn levels measured using the colloidal gold method and chemiluminescence method, including levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). The correlation between serum Gn and urinary Gn detected by the two methods, as well as the correlation between Tanner stages of healthy children and urinary Gn, was analyzed.
RESULTS:
Urine Gn levels detected by both the colloidal gold method and chemiluminescence method showed a positive correlation with serum LH baseline values, LH peak values, baseline LH/FSH ratios, and peak LH/FSH ratios (P<0.05). In healthy children, urinary LH levels detected by the chemiluminescence method gradually increased from Tanner stage Ⅰ to Ⅳ (P<0.05), while urinary FSH levels were lower in Tanner stage I than in stages Ⅱ, Ⅲ, and IV (P<0.05). Urinary LH levels detected by the colloidal gold method were lower in Tanner stage I compared to stages Ⅱ, Ⅲ, and IV, with the highest levels observed in Tanner stage Ⅳ (P<0.05). Additionally, urinary FSH levels in Tanner stage Ⅲ were higher than in stages Ⅰ and Ⅱ (P<0.05). The area under the receiver operating characteristic curve for evaluating Tanner stages I and II in healthy children using urinary LH and FSH levels by the chemiluminescence method and urinary LH levels by the colloidal gold method were 0.730, 0.699, and 0.783, respectively.
CONCLUSIONS
The colloidal gold method and chemiluminescence method for detecting Gn in morning urine show good correlation with serum Gn levels. As a non-invasive and convenient detection method, the colloidal gold method can serve as a useful tool for screening the onset of pubertal development in children.
Humans
;
Child
;
Male
;
Female
;
Gold Colloid
;
Luminescent Measurements/methods*
;
Gonadotropins/urine*
;
Puberty
;
Luteinizing Hormone/urine*
;
Child, Preschool
;
Adolescent
;
Follicle Stimulating Hormone/urine*

Result Analysis
Print
Save
E-mail