1.Clinical practice guidelines for intraoperative cell salvage in patients with malignant tumors
Changtai ZHU ; Ling LI ; Zhiqiang LI ; Xinjian WAN ; Shiyao CHEN ; Jian PAN ; Yi ZHANG ; Xiang REN ; Kun HAN ; Feng ZOU ; Aiqing WEN ; Ruiming RONG ; Rong XIA ; Baohua QIAN ; Xin MA
Chinese Journal of Blood Transfusion 2025;38(2):149-167
Intraoperative cell salvage (IOCS) has been widely applied as an important blood conservation measure in surgical operations. However, there is currently a lack of clinical practice guidelines for the implementation of IOCS in patients with malignant tumors. This report aims to provide clinicians with recommendations on the use of IOCS in patients with malignant tumors based on the review and assessment of the existed evidence. Data were derived from databases such as PubMed, Embase, the Cochrane Library and Wanfang. The guideline development team formulated recommendations based on the quality of evidence, balance of benefits and harms, patient preferences, and health economic assessments. This study constructed seven major clinical questions. The main conclusions of this guideline are as follows: 1) Compared with no perioperative allogeneic blood transfusion (NPABT), perioperative allogeneic blood transfusion (PABT) leads to a more unfavorable prognosis in cancer patients (Recommended); 2) Compared with the transfusion of allogeneic blood or no transfusion, IOCS does not lead to a more unfavorable prognosis in cancer patients (Recommended); 3) The implementation of IOCS in cancer patients is economically feasible (Recommended); 4) Leukocyte depletion filters (LDF) should be used when implementing IOCS in cancer patients (Strongly Recommended); 5) Irradiation treatment of autologous blood to be reinfused can be used when implementing IOCS in cancer patients (Recommended); 6) A careful assessment of the condition of cancer patients (meeting indications and excluding contraindications) should be conducted before implementing IOCS (Strongly Recommended); 7) Informed consent from cancer patients should be obtained when implementing IOCS, with a thorough pre-assessment of the patient's condition and the likelihood of blood loss, adherence to standardized internally audited management procedures, meeting corresponding conditions, and obtaining corresponding qualifications (Recommended). In brief, current evidence indicates that IOCS can be implemented for some malignant tumor patients who need allogeneic blood transfusion after physician full evaluation, and LDF or irradiation should be used during the implementation process.
2.Fucoidan sulfate regulates Hmox1-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy.
Yu-Feng CAI ; Wei HU ; Yi-Gang WAN ; Yue TU ; Si-Yi LIU ; Wen-Jie LIU ; Liu-Yun-Xin PAN ; Ke-Jia WU
China Journal of Chinese Materia Medica 2025;50(9):2461-2471
This study explores the role and underlying molecular mechanisms of fucoidan sulfate(FPS) in regulating heme oxygenase-1(Hmox1)-mediated ferroptosis to ameliorate myocardial injury in diabetic cardiomyopathy(DCM) through in vivo and in vitro experiments and network pharmacology analysis. In vivo, a DCM rat model was established using a combination of "high-fat diet feeding + two low-dose streptozotocin(STZ) intraperitoneal injections". The rats were randomly divided into four groups: normal, model, FPS, and dapagliflozin(Dapa) groups. In vitro, a cellular model was created by inducing rat cardiomyocytes(H9c2 cells) with high glucose(HG), using zinc protoporphyrin(ZnPP), an Hmox1 inhibitor, as the positive control. An automatic biochemical analyzer was used to measure blood glucose(BG), serum aspartate aminotransferase(AST), serum lactate dehydrogenase(LDH), and serum creatine kinase-MB(CK-MB) levels. Echocardiography was used to assess rat cardiac function, including ejection fraction(EF) and fractional shortening(FS). Pathological staining was performed to observe myocardial morphology and fibrotic characteristics. DCFH-DA fluorescence probe was used to detect reactive oxygen species(ROS) levels in myocardial tissue. Specific assay kits were used to measure serum brain natriuretic peptide(BNP), myocardial Fe~(2+), and malondialdehyde(MDA) levels. Western blot(WB) was used to detect the expression levels of myosin heavy chain 7B(MYH7B), natriuretic peptide A(NPPA), collagens type Ⅰ(Col-Ⅰ), α-smooth muscle actin(α-SMA), ferritin heavy chain 1(FTH1), solute carrier family 7 member 11(SLC7A11), glutathione peroxidase 4(GPX4), 4-hydroxy-2-nonenal(4-HNE), and Hmox1. Immunohistochemistry(IHC) was used to examine Hmox1 protein expression patterns. FerroOrange and Highly Sensitive DCFH-DA fluorescence probes were used to detect intracellular Fe~(2+) and ROS levels. Transmission electron microscopy was used to observe changes in mitochondrial morphology. In network pharmacology, FPS targets were identified through the PubChem database and PharmMapper platform. DCM-related targets were integrated from OMIM, GeneCards, and DisGeNET databases, while ferroptosis-related targets were obtained from the FerrDb database. A protein-protein interaction(PPI) network was constructed for the intersection of these targets using STRING 11.0, and core targets were screened with Cytoscape 3.9.0. Molecular docking analysis was conducted using AutoDock and PyMOL 2.5. In vivo results showed that FPS significantly reduced AST, LDH, CK-MB, and BNP levels in DCM model rats, improved cardiac function, decreased the expression of myocardial injury proteins(MYH7B, NPPA, Col-Ⅰ, and α-SMA), alleviated myocardial hypertrophy and fibrosis, and reduced Fe~(2+), ROS, and MDA levels in myocardial tissue. Furthermore, FPS regulated the expression of ferroptosis-related markers(Hmox1, FTH1, SLC7A11, GPX4, and 4-HNE) to varying degrees. Network pharmacology results revealed 313 potential targets for FPS, 1 125 targets for DCM, and 14 common targets among FPS, DCM, and FerrDb. Hmox1 was identified as a key target, with FPS showing high docking activity with Hmox1. In vitro results demonstrated that FPS restored the expression levels of ferroptosis-related proteins, reduced intracellular Fe~(2+) and ROS levels, and alleviated mitochondrial structural damage in cardiomyocytes. In conclusion, FPS improves myocardial injury in DCM, with its underlying mechanism potentially involving the regulation of Hmox1 to inhibit ferroptosis. This study provides pharmacological evidence supporting the therapeutic potential of FPS for DCM-induced myocardial injury.
Animals
;
Ferroptosis/drug effects*
;
Rats
;
Diabetic Cardiomyopathies/physiopathology*
;
Male
;
Rats, Sprague-Dawley
;
Polysaccharides/pharmacology*
;
Heme Oxygenase-1/genetics*
;
Myocytes, Cardiac/metabolism*
;
Myocardium/pathology*
;
Humans
;
Cell Line
;
Heme Oxygenase (Decyclizing)
3.Mechanisms and treatment of inflammation-cancer transformation in colon from perspective of cold and heat in complexity in integrative medicine.
Ning WANG ; Han-Zhou LI ; Tian-Ze PAN ; Wei-Bo WEN ; Ya-Lin LI ; Qian-Qian WAN ; Yu-Tong JIN ; Yu-Hong BIAN ; Huan-Tian CUI
China Journal of Chinese Materia Medica 2025;50(10):2605-2618
Colorectal cancer(CRC) is one of the most common malignant tumors worldwide, primarily originating from recurrent inflammatory bowel disease(IBD). Therefore, blocking the inflammation-cancer transformation in the colon has become a focus in the early prevention and treatment of CRC. The inflammation-cancer transformation in the colon involves multiple types of cells and complex pathological processes, including inflammatory responses and tumorigenesis. In this complex pathological process, immune cells(including non-specific and specific immune cells) and non-immune cells(such as tumor cells and fibroblasts) interact with each other, collectively promoting the progression of the disease. In traditional Chinese medicine(TCM), inflammation-cancer transformation in the colon belongs to the categories of dysentery and diarrhea, with the main pathogenesis being cold and heat in complexity. This paper first elaborates on the complex molecular mechanisms involved in the inflammation-cancer transformation process in the colon from the perspectives of inflammation, cancer, and their mutual influences. Subsequently, by comparing the pathogenic characteristics and clinical manifestations between inflammation-cancer transformation and the TCM pathogenesis of cold and heat in complexity, this paper explores the intrinsic connections between the two. Furthermore, based on the correlation between inflammation-cancer transformation in the colon and the TCM pathogenesis, this paper delves into the importance of the interaction between inflammation and cancer. Finally, it summarizes and discusses the clinical and basic research progress in the TCM intervention in the inflammation-cancer transformation process, providing a theoretical basis and treatment strategy for the treatment of CRC with integrated traditional Chinese and Western medicine.
Humans
;
Colon/pathology*
;
Integrative Medicine
;
Animals
;
Cold Temperature
;
Cell Transformation, Neoplastic/drug effects*
;
Medicine, Chinese Traditional
;
Hot Temperature
;
Inflammation
;
Drugs, Chinese Herbal/therapeutic use*
;
Colonic Neoplasms/drug therapy*
4.Exploration of pharmacodynamic material basis and mechanism of Jinbei Oral Liquid against idiopathic pulmonary fibrosis based on UHPLC-Q-TOF-MS/MS and network pharmacology.
Jin-Chun LEI ; Si-Tong ZHANG ; Xian-Run HU ; Wen-Kang LIU ; Xue-Mei CHENG ; Xiao-Jun WU ; Wan-Sheng CHEN ; Man-Lin LI ; Chang-Hong WANG
China Journal of Chinese Materia Medica 2025;50(10):2825-2840
This study aims to explore the pharmacodynamic material basis of Jinbei Oral Liquid(JBOL) against idiopathic pulmonary fibrosis(IPF) based on serum pharmacochemistry and network pharmacology. The ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry(UHPLC-Q-TOF-MS/MS) technology was employed to analyze and identify the components absorbed into rat blood after oral administration of JBOL. Combined with network pharmacology, the study explored the pharmacodynamic material basis and potential mechanism of JBOL against IPF through protein-protein interaction(PPI) network construction, "component-target-pathway" analysis, Gene Ontology(GO) functional enrichment, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis. First, a total of 114 compounds were rapidly identified in JBOL extract according to the exact relative molecular mass, fragment ions, and other information of the compounds with the use of reference substances and a self-built compound database. Second, on this basis, 70 prototype components in blood were recognized by comparing blank serum with drug-containing serum samples, including 28 flavonoids, 25 organic acids, 4 saponins, 4 alkaloids, and 9 others. Finally, using these components absorbed into blood as candidates, the study obtained 212 potential targets of JBOL against IPF. The anti-IPF mechanism might involve the action of active ingredients such as glycyrrhetinic acid, cryptotanshinone, salvianolic acid B, and forsythoside A on core targets like AKT1, TNF, and ALB and thereby the regulation of multiple signaling pathways including PI3K/AKT, HIF-1, and TNF. In conclusion, JBOL exerts the anti-IPF effect through multiple components, targets, and pathways. The results would provide a reference for further study on pharmacodynamic material basis and pharmacological mechanism of JBOL.
Drugs, Chinese Herbal/pharmacokinetics*
;
Animals
;
Tandem Mass Spectrometry
;
Network Pharmacology
;
Rats
;
Chromatography, High Pressure Liquid
;
Rats, Sprague-Dawley
;
Male
;
Idiopathic Pulmonary Fibrosis/metabolism*
;
Humans
;
Administration, Oral
;
Protein Interaction Maps/drug effects*
;
Signal Transduction/drug effects*
5.Blood glucose-lowering mechanism of Poria aqueous extract by UPLC-Q-TOF-MS/MS combined with network pharmacology and experimental verification.
Dan-Dan ZHANG ; Wen-Biao WAN ; Qing YAO ; Fang LI ; Zi-Yin YAO ; Xiao-Chuan YE
China Journal of Chinese Materia Medica 2025;50(14):3980-3989
Ultra performance liquid chromatography-quadrupole-time-of-flight-mass spectrometry/mass spectrometry(UPLC-Q-TOF-MS/MS), network pharmacology, and animal experiments were integrated o explore the blood glucose-lowering effects and mechanisms of Poria aqueous extract. Firstly, the active components of Poria aqueous extract were identified by UPLC-Q-TOF-MS/MS. Subsequently, network pharmacology was employed to predict the blood glucose-lowering components and mechanisms of Poria aqueous extract. Finally, a rat model of diabetes mellitus, 16S rDNA sequencing, and Western blot were employed to investigate the blood glucose-lowering effect and mechanism of Poria aqueous extract. A total of 39 triterpenoids were identified in the Poria aqueous extract, among them, 25-hydroxypachymic acid, 25α-hydroxytumulosic acid, 16α-hydroxytrametenolic acid, polyporenic acid C, and tumulosic acid may be the main active ingredients for treating diabetes. The Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis revealed that Poria might exert its therapeutic effects through multiple pathways such as NOD-like receptor signaling pathway, nuclear factor-kappa B(NF-κB) signaling pathway, and tumor necrosis factor(TNF) signaling pathway. The results of animal experiments demonstrated that Poria aqueous extract significantly reduced the levels of blood glucose and lipids and regulated the intestinal flora in diabetic rats. The main affected taxa included g_Escherichia-Shigella, g_Corynebacterium, g_Prevotella_9, g_Prevotellaceae_UCG-001, and g_Bacteroidota_unclassified. In addition, Poria aqueous extract lowered the levels of D-lactic acid and lipopolysaccharide, alleviated colonic mucosal damage, significantly down-regulated the protein levels of NOD-like receptor pyrin domain-containing protein 3(NLRP3), NF-κB, and TNF-α, and significantly up-regulated the protein levels of zonula occludens 1 and occludin in diabetic rates. Poria aqueous extract may play a role in treating diabetes mellitus by repairing the intestinal flora disturbance, protecting the intestinal barrier function, and inhibiting the NF-κB/NLRP3 signaling pathway. The results provide a scientific basis for clinical application and expansion of indications of Poria.
Animals
;
Rats
;
Network Pharmacology
;
Tandem Mass Spectrometry
;
Male
;
Drugs, Chinese Herbal/pharmacology*
;
Chromatography, High Pressure Liquid
;
Blood Glucose/drug effects*
;
Rats, Sprague-Dawley
;
Hypoglycemic Agents/administration & dosage*
;
Poria/chemistry*
;
Diabetes Mellitus, Experimental/metabolism*
;
NF-kappa B/genetics*
;
Gastrointestinal Microbiome/drug effects*
;
Humans
6.Research progress and exploration of traditional Chinese medicine in treatment of sepsis-acute lung injury by inhibiting pyroptosis.
Wen-Yu WU ; Nuo-Ran LI ; Kai WANG ; Xin JIAO ; Wan-Ning LAN ; Yun-Sheng XU ; Lin WANG ; Jing-Nan LIN ; Rui CHEN ; Rui-Feng ZENG ; Jun LI
China Journal of Chinese Materia Medica 2025;50(16):4425-4436
Sepsis is a systemic inflammatory response caused by severe infection or trauma, and is one of the common causes of acute lung injury(ALI) and acute respiratory distress syndrome(ARDS). Sepsis-acute lung injury(SALI) is a critical clinical condition with high morbidity and mortality. Its pathogenesis is complex and not yet fully understood, and there is currently a lack of targeted and effective treatment options. Pyroptosis, a novel form of programmed cell death, plays a key role in the pathological process of SALI by activating inflammasomes and releasing inflammatory factors, making it a potential therapeutic target. In recent years, the role of traditional Chinese medicine(TCM) in regulating signaling pathways related to pyroptosis through multi-components and multi-targets has attracted increasing attention. TCM may intervene in pyroptosis by inhibiting the activation of NLRP3 inflammasomes and regulating the expression of Caspase family proteins, thus alleviating inflammatory damage in lung tissues. This paper systematically reviews the molecular regulatory network of pyroptosis in SALI and explores the potential mechanisms and research progress on TCM intervention in cellular pyroptosis. The aim is to provide new ideas and theoretical support for basic research and clinical treatment strategies of TCM in SALI.
Pyroptosis/drug effects*
;
Humans
;
Sepsis/genetics*
;
Acute Lung Injury/physiopathology*
;
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Inflammasomes/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
7.Small-sized twin-nanoparticles normalize tumor vasculature to enhance tumor accumulation and penetration for potent eradication of cancer stem-like cells.
Changshun ZHAO ; Wei WANG ; Zhengchun HUANG ; Yuqing WAN ; Rui XU ; Junmei ZHANG ; Bingbing ZHAO ; Ke WANG ; Suchen WEN ; Yinan ZHONG ; Dechun HUANG ; Wei CHEN
Acta Pharmaceutica Sinica B 2025;15(10):5458-5473
Cancer stem cells (CSCs) are proposed to account for the progression, metastasis, and recurrence of diverse malignancies. However, the disorganized vasculars in tumors hinder the accumulation and penetration of nanomedicines, posing a challenge in eliminating CSCs located distantly from blood vessels. Herein, a pair of twin-like small-sized nanoparticles, sunitinib (St)-loaded ROS responsive micelles (RM@St) and salinomycin (SAL)-loaded GSH responsive micelles (GM@SAL), are developed to normalize disordered tumor vessels and eradicate CSCs. RM@St releases sunitinib in response to the abundant ROS in the tumor extracellular microenvironment for tumor vessel normalization, which improved intratumor accumulation and homogeneous distribution of small-sized GM@SAL. Sequentially, GM@SAL effectively accesses CSCs and achieves reduction-responsive drug release at high GSH concentrations within CSCs. More importantly, RM@St significantly extends the window of vessel normalization and enhances vessel integrity compared to free sunitinib, thus further amplifying the anti-tumor effect of GM@SAL. The combination therapy of RM@St plus GM@SAL produces considerable depression of tumor growth, drastically reducing CSCs fractions to 5.6% and resulting in 78.4% inhibition of lung metastasis. This study offers novel insights into rational nanomedicines designed for superior therapeutic effects by vascular normalization and anti-CSCs therapy.
8.Unmet Need for Palliative Care in Pediatric Hematology/Oncology Populations
Yi-Lun WANG ; Wan-Ju LEE ; Tsung-Yen CHANG ; Shih-Hsiang CHEN ; Chia-Chi CHIU ; Yi-Wen HSIAO ; Yu-Chuan WEN ; Tang-Her JAING
Clinical Pediatric Hematology-Oncology 2025;32(1):19-22
Background:
Delivering a poor prognosis to patients and their families is critically challenging in pediatric populations. The application of palliative care (PC) provides a bridge between accepting the occurrence of mortality and offering lifelong support.However, little is known about the specifics of PC. This study aims to explore the unmet need for PC in pediatric populations.
Methods:
We retrospectively reviewed the medical records of mortality cases in the Department of Pediatric Hematology and Oncology at Chang Gung Memorial Hospital. Statistical tests, including Chi-square and Student’s t-tests, were applied to determine the differences between early and late intervention groups in terms of the timing of PC introduction.
Results:
During the study period, 41 patients were included. Their median age was 11.8 years (IQR, 7.6-15.9). The majority of the disease statuses were refractory or relapsing (R/R). The incidence of memento application was significantly higher in the early intervention group (47.6% vs. 10%, P=0.0081). Vital signs variations tended to be end-of-life (EoL) indicators in this study.
Conclusion
The early introduction of PC encourages families to accompany their beloved child. EoL signs in the pediatric population include vital sign variations. With the presence of relevant EoL signs, clinical physicians can apply PC earlier to meet the needs.
9.Upper Airway Collapsibility During Rapid Eye Movement Sleep Is Associated With the Response to Upper Airway Surgery for Obstructive Sleep Apnea
Yung-An TSOU ; Liang-Wen HANG ; Eysteinn FINNSSON ; Jón S. ÁGÚSTSSON ; Scott A. SANDS ; Wan-Ju CHENG
Clinical and Experimental Otorhinolaryngology 2025;18(1):50-56
Objectives:
. Endotype-based interventions have shown promise in the treatment of patients with obstructive sleep apnea, and upper airway surgery is a key therapeutic option. However, responses to surgery vary among patients with obstructive sleep apnea. This study aims to examine changes in endotypic traits following upper airway surgery and to explore their association with surgical outcomes.
Methods:
. We prospectively recruited 25 patients with obstructive sleep apnea who visited a single sleep center for upper airway surgery. These patients underwent polysomnographic studies both before and after surgical intervention. During non-rapid eye movement and rapid eye movement sleep, we estimated endotypic traits—including collapsibility (Vpassive), arousal threshold, loop gain, and upper airway compensation—with the phenotyping using polysomnography method. Based on improvements in the apnea-hypopnea index, patients were classified as either responders or non-responders. We compared the preoperative endotypic traits between these groups using Mann-Whitney tests. Additionally, we compared changes in endotypic traits pre- and post-surgery between responders and non-responders using generalized linear mixed models.
Results:
. We identified 12 responders and 13 non-responders. Compared to non-responders, responders exhibited improved collapsibility during rapid eye movement sleep (22.3 vs. −8.2%eupnea in Vpassive, P=0.01), and their arousal threshold decreased during non-rapid eye movement sleep (−22.4%eupnea, P=0.02). No endotypic trait predicted surgical response; however, the apnea-hypopnea index during rapid eye movement sleep was higher among responders than non-responders (51.8/hr vs. 34.4/hr, P=0.05).
Conclusion
. Upper airway surgery significantly reduced collapsibility during rapid eye movement sleep in responders. The target pathology for upper airway surgery is a compromised upper airway during rapid eye movement sleep.
10.Unmet Need for Palliative Care in Pediatric Hematology/Oncology Populations
Yi-Lun WANG ; Wan-Ju LEE ; Tsung-Yen CHANG ; Shih-Hsiang CHEN ; Chia-Chi CHIU ; Yi-Wen HSIAO ; Yu-Chuan WEN ; Tang-Her JAING
Clinical Pediatric Hematology-Oncology 2025;32(1):19-22
Background:
Delivering a poor prognosis to patients and their families is critically challenging in pediatric populations. The application of palliative care (PC) provides a bridge between accepting the occurrence of mortality and offering lifelong support.However, little is known about the specifics of PC. This study aims to explore the unmet need for PC in pediatric populations.
Methods:
We retrospectively reviewed the medical records of mortality cases in the Department of Pediatric Hematology and Oncology at Chang Gung Memorial Hospital. Statistical tests, including Chi-square and Student’s t-tests, were applied to determine the differences between early and late intervention groups in terms of the timing of PC introduction.
Results:
During the study period, 41 patients were included. Their median age was 11.8 years (IQR, 7.6-15.9). The majority of the disease statuses were refractory or relapsing (R/R). The incidence of memento application was significantly higher in the early intervention group (47.6% vs. 10%, P=0.0081). Vital signs variations tended to be end-of-life (EoL) indicators in this study.
Conclusion
The early introduction of PC encourages families to accompany their beloved child. EoL signs in the pediatric population include vital sign variations. With the presence of relevant EoL signs, clinical physicians can apply PC earlier to meet the needs.

Result Analysis
Print
Save
E-mail