1.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
2.IDH3A Inhibits Cardiomyocyte Hypertrophy via Elevating α-Ketoglutarate Level
Huayan WU ; Yihong WEN ; Hengli ZHAO ; Yuan GAO ; Chuanmeng ZHOU ; Ya WANG ; Jiening ZHU ; Zhixin SHAN
Journal of Sun Yat-sen University(Medical Sciences) 2025;46(2):275-283
ObjectiveTo investigate the regulatory effect and potential mechanisms of isocitrate dehydrogenase 3A (IDH3A) on cardiomyocyte hypertrophy. MethodsThe expression of IDH3A in the myocardium of healthy volunteers (n=10) and patients with heart failure (HF) (n=10), and in the myocardium of mice subjected to transverse aortic constriction (TAC) surgery and sham operation, as well as in phenylephrine (PE)-induced neonatal rat ventricular cardiomyocytes (NRVCs), was assessed by real-time quantitative polymerase chain reaction (RT-qPCR) and Western blot assay. The effect of adenovirus-mediated overexpression of IDH3A on the expression of hypertrophy-related genes in PE-induced NRVCs was also evaluated. The effect of IDH3A on NRVCs area was examined by phalloidin staining assay. A mutant of IDH3A with abolished enzymatic activity, IDH3A_D208A, was generated through site-directed mutagenesis. The impact of this IDH3A mutant on the hypertrophic phenotype, ATP and ROS levels in NRVCs was evaluated to investigate whether the regulatory role of IDH3A in cardiomyocyte hypertrophy was dependent on its enzymatic activity. The effect of exogenous α-ketoglutaric acid (AKG) on cardiomyocyte hypertrophy was also detected by Western blot and phalloidin staining assay, respectively. ResultsIDH3A was significantly decreased in the myocardium of HF patients, in the myocardium of TAC-operated mice, and in PE-induced NRVCs (P = 0.005 2,P = 0.026 6,P = 0.041 3 and P = 0.006 6, respectively). Overexpression of IDH3A markedly suppressed the expression of hypertrophy-related genes and the increase of cell size of PE-induced NRVCs (P < 0.000 1, P = 0.000 1 and P = 0.000 2, respectively). The ATP and ROS analysis indicated that IDH3A inhibited the increases of ATP and ROS levels in PE-induced NRVCs (P = 0.001 2 and P<0.000 1, respectively), whereas the enzymatically inactive IDH3A mutant lacked this effect. Exogenous AKG provision could, but overexpression of IDH3A mutant failed to suppress PE-induced NRVCs hypertrophy. ConclusionIDH3A inhibits cardiomyocyte hypertrophy via elevating AKG level, providing scientific evidence for study on IDH3A-based treatment of cardiac hypertrophy.
3.Traditional Chinese Medicine Regulates Metabolic Reprogramming to Treat Lung Cancer: A Review
Xiaoli WEN ; Fangyan CAI ; Ling LIU ; Si SHAN ; Xiang ZHANG ; Hongning LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(24):269-279
Lung cancer has the highest morbidity and mortality rate among all cancers. Because of the complex pathogenesis, there are limitations in the common Western medicine treatment methods. Clinical and experimental studies have proved that traditional Chinese medicine (TCM) can not only effectively treat lung cancer and alleviate the clinical symptoms of cancer patients but also reduce the adverse reactions and complications caused by surgery, chemotherapy, and radiotherapy to improve the quality of life of the patients. The biological behaviors of lung cancer cells, such as proliferation, invasion, and metastasis, are closely related to their metabolic reprogramming. Metabolic reprogramming in lung cancer involves a series of metabolic changes such as increased glucose uptake and consumption, enhanced glycolysis, increased amino acid uptake and catabolism, and enhanced lipid and protein synthesis. Studies have reported that TCM active components, extracts, and compound prescriptions can effectively inhibit the biological behaviors of lung cancer by regulating metabolic reprogramming. Therefore, this paper reviews the pharmacological mechanisms of TCM active components, extracts, and compound prescriptions in regulating metabolic reprogramming of lung cancer, with the aim of providing a new way of thinking for the treatment of lung cancer by TCM regulation of metabolic reprogramming of lung cancer cells. The available studies suggest that TCM mainly inhibits the extracellular signal-regulated protein kinase (ERK)/c-Myc, phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR), and hypoxia-inducible factor-α (HIF-1α) pathways. Furthermore, the expression of monocarboxylate transporter 4 (MCT4), glucose transporter 1 (GLUT1), pyruvate dehydrogenase (PDH), phosphofructokinase 1 (PFK1), pyruvate dehydrogenase kinase 1 (PDK1), pyruvate kinase M2 (PKM2), hexokinase (HK), lactate dehydrogenase (LDH), and lactate dehydrogenase A (LDHA) are inhibited. In this way, TCM inhibits the glucose uptake by lung cancer cells and glycolysis in lung cancer cells to reduce the energy metabolism of tumor cells, ultimately achieving the therapeutic effect on lung cancer.
4.Identification of GSK3 family and regulatory effects of brassinolide on growth and development of Nardostachys jatamansi.
Yu-Yan LEI ; Zheng MA ; Jing WEI ; Wen-Bing LI ; Ying LI ; Zheng-Ming YANG ; Shao-Shan ZHANG ; Jing-Qiu FENG ; Hua-Chun SHENG ; Yuan LIU
China Journal of Chinese Materia Medica 2025;50(2):395-403
This study identified 8 members including NjBIN2 of the GSK3 family in Nardostachys jatamansi by bioinformatics analysis. Moreover, the phylogenetic tree revealed that the GKS3 family members of N. jatamansi had a close relationship with those of Arabidopsis. RT-qPCR results showed that NjBIN2 presented a tissue-specific expression pattern with the highest expression in roots, suggesting that NjBIN2 played a role in root growth and development. In addition, the application of epibrassinolide or the brassinosteroid(BR) synthesis inhibitor(brassinazole) altered the expression pattern of NjBIN2 and influenced the photomorphogenesis(cotyledon opening) and root development of N. jatamansi, which provided direct evidence about the functions of NjBIN2. In conclusion, this study highlights the roles of BIN2 in regulating the growth and development of N. jatamansi by analyzing the expression pattern and biological function of NjBIN2. It not only enriches the understanding about the regulatory mechanism of the growth and development of N. jatamansi but also provides a theoretical basis and potential gene targets for molecular breeding of N. jatamansi with improved quality in the future.
Brassinosteroids/metabolism*
;
Steroids, Heterocyclic/metabolism*
;
Gene Expression Regulation, Plant/drug effects*
;
Plant Proteins/metabolism*
;
Phylogeny
;
Nardostachys/metabolism*
;
Plant Growth Regulators/pharmacology*
;
Plant Roots/drug effects*
5.Saltwater stir-fried Plantaginis Semen alleviates renal fibrosis by regulating epithelial-mesenchymal transition in renal tubular cells.
Xin-Lei SHEN ; Qing-Ru ZHU ; Wen-Kai YU ; Li ZHOU ; Qi-Yuan SHAN ; Yi-Hang ZHANG ; Yi-Ni BAO ; Gang CAO
China Journal of Chinese Materia Medica 2025;50(5):1195-1208
This study aimed to investigate the effect of saltwater stir-fried Plantaginis Semen(SPS) on renal fibrosis in rats and decipher the underlying mechanism. Thirty-six Sprague-Dawley rats were randomly assigned into control, model, losartan potassium, and low-, medium-, and high-dose(15, 30, and 60 g·kg~(-1), respectively) SPS groups. Rats in other groups except the control group were subjected to unilateral ureteral obstruction(UUO) to induce renal fibrosis, and the modeling and gavage lasted for 14 days. After 14 consecutive days of treatment, the levels of serum creatinine(Scr) and blood urea nitrogen(BUN) in rats of each group were determined by an automatic biochemical analyzer. Hematoxylin-eosin(HE) and Masson staining were used to evaluate pathological changes in the renal tissue. Western blot and immunofluorescence assay were conducted to determine the protein levels of fibronectin(FN), collagen Ⅰ, vimentin, and α-smooth muscle actin(α-SMA) in the renal tissue. The mRNA levels of epithelial-mesenchymal transition(EMT)-associated transcription factors including twist family bHLH transcription factor 1(TWIST1), snail family transcriptional repressor 1(SNAI1), and zinc finger E-box binding homeobox 1(ZEB1), as well as inflammatory cytokines such as interleukin-1β(IL-1β), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α), were determined by RT-qPCR. Human renal proximal tubular epithelial(HK2) cells exposed to transforming growth factor-β(TGF-β) for the modeling of renal fibrosis were used to investigate the inhibitory effect of SPS on EMT. Network pharmacology and Western blot were employed to explore the molecular mechanism of SPS in alleviating renal fibrosis. The results showed that SPS significantly reduced Scr and BUN levels and alleviated renal injury and collagen deposition in UUO rats. Moreover, SPS notably down-regulated the protein levels of FN, collagen Ⅰ, vimentin, and α-SMA as well as the mRNA levels of SNAI1, ZEB1, TWIST1, IL-1β, IL-6, and TNF-α in the kidneys of UUO rats and TGF-β-treated HK-2 cells. In addition, compared with Plantaginis Semen without stir-frying with saltwater, SPS showed increased content of specific compounds, which were mainly enriched in the mitogen-activated protein kinase(MAPK) signaling pathway. SPS significantly inhibited the phosphorylation of extracellular signal-regulated kinase(ERK) and p38 MAPK in the kidneys of UUO rats and TGF-β-treated HK2 cells. In conclusion, SPS can alleviate renal fibrosis by attenuating EMT through inhibition of the MAPK signaling pathway.
Animals
;
Epithelial-Mesenchymal Transition/drug effects*
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
Fibrosis/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Kidney Diseases/pathology*
;
Kidney Tubules/pathology*
;
Humans
6.Phenylpropanoids from roots of Berberis polyantha.
Dong-Mei SHA ; Shuai-Cong NI ; Li-Niu SHA-MA ; Hai-Xiao-Lin-Mo MA ; Xiao-Yong HE ; Bin HE ; Shao-Shan ZHANG ; Ying LI ; Jing WEN ; Yuan LIU ; Xin-Jia YAN
China Journal of Chinese Materia Medica 2025;50(6):1564-1568
The chemical constituents were systematically separated from the roots of Berberis polyantha by various chromatographic methods, including silica gel column chromatography, HP20 column chromatography, polyamide column chromatography, reversed-phase C_(18) column chromatography, and preparative high-performance liquid chromatography. The structures of the compounds were identified by physicochemical properties and spectroscopic techniques(1D NMR, 2D NMR, UV, MS, and CD). Four phenylpropanoids were isolated from the methanol extract of the roots of B. polyantha, and they were identified as(2R)-1-(4-hydroxy-3,5-dimethoxyphenyl)-1-propanone-O-β-D-glucopyranoside(1), methyl 4-hydroxy-3,5-dimethoxybenzoate(2),(+)-syringaresinol(3), and syringaresinol-4-O-β-D-glucopyranoside(4). Compound 1 was a new compound, and other compounds were isolated from this plant for the first time. The anti-inflammatory activity of these compounds was evaluated based on the release of nitric oxide(NO) in the culture of lipopolysaccharide(LPS)-induced RAW264.7 macrophages. At a concentration of 10 μmol·L~(-1), all the four compounds inhibited the LPS-induced release of NO in RAW264.7 cells, demonstrating potential anti-inflammatory properties.
Plant Roots/chemistry*
;
Animals
;
Mice
;
Berberis/chemistry*
;
RAW 264.7 Cells
;
Macrophages/immunology*
;
Drugs, Chinese Herbal/isolation & purification*
;
Nitric Oxide/metabolism*
;
Molecular Structure
;
Anti-Inflammatory Agents/isolation & purification*
7.Identification and expression analysis of seed dehydration tolerance and PLD gene family in Panax medicinal plants.
Chao-Lin LI ; Min HUANG ; Na GE ; Qing-Yan WANG ; Jin-Shan JIA ; Ting LUO ; Jin-Yan ZHANG ; Ping ZHOU ; Jun-Wen CHEN
China Journal of Chinese Materia Medica 2025;50(12):3307-3321
Panax species are mostly valuable medicinal plants. While some species' seeds are sensitive to dehydration, the dehydration tolerance of seeds from other Panax species remains unclear. The phospholipase D(PLD) gene plays an important role in plant responses to dehydration stress. However, the characteristics of the PLD gene family and their mechanisms of response to dehydration stress in seeds of Panax species with different dehydration tolerances are not well understood. This study used seeds from eight Panax species to measure the germination rates and PLD activity after dehydration and to analyze the correlation between dehydration tolerance and seed traits. Bioinformatics analysis was also conducted to characterize the PnPLD and PvPLD gene families and to evaluate their expression patterns under dehydration stress. The dehydration tolerance of Panax seeds was ranked from high to low as follows: P. ginseng, P. zingiberensis, P. quinquefolius, P. vietnamensis var. fuscidiscus, P. japonicus var. angustifolius, P. japonicus, P. notoginseng, and P. stipuleanatus. A significant negative correlation was found between dehydration tolerance and seed shape(three-dimensional variance), with flatter seeds exhibiting stronger dehydration tolerance(r=-0.792). Eighteen and nineteen PLD members were identified in P. notoginseng and P. vietnamensis var. fuscidiscus, respectively. These members were classified into five isoforms: α, β, γ, δ, and ζ. The gene structures, subcellular localization, physicochemical properties, and other characteristics of PnPLD and PvPLD were similar. Both promoters contained regulatory elements associated with plant growth and development, hormone responses, and both abiotic and biotic stress. During dehydration, the PLD enzyme activity in P. notoginseng seeds gradually increased as the water content decreased, whereas in P. vietnamensis var. fuscidiscus, PLD activity first decreased and then increased. The expression of PLDα and PLDδ in P. notoginseng seeds initially increased and then decreased, whereas in P. vietnamensis var. fuscidiscus, the expression of PLDα and PLDδ consistently decreased. In conclusion, the dehydration tolerance of Panax seeds showed a significant negative correlation with seed shape. The dehydration tolerance in P. vietnamensis var. fuscidiscus and dehydration sensitivity of P. notoginseng seeds may be related to differences in PLD enzyme activity and the expression of PLDα and PLDδ genes. This study provided the first systematic comparison of dehydration tolerance in Panax seeds and analyzed the causes of tolerance differences and the optimal water content for long-term storage at ultra-low temperatures, thus providing a theoretical basis for the short-term and ultra-low temperature long-term storage of medicinal plant seeds with varying dehydration tolerances.
Seeds/metabolism*
;
Panax/physiology*
;
Plant Proteins/metabolism*
;
Gene Expression Regulation, Plant
;
Phospholipase D/metabolism*
;
Plants, Medicinal/enzymology*
;
Germination
;
Multigene Family
;
Water/metabolism*
;
Dehydration
;
Phylogeny
8.Theoretical discussion and research progress on treatment of glucocorticoid- induced osteoporosis with traditional Chinese medicine.
Ting-Ting XU ; Ying DING ; Xia ZHANG ; Long WANG ; Shan-Shan XU ; Chun-Dong SONG ; Wen-Sheng ZHAI ; Xian-Qing REN
China Journal of Chinese Materia Medica 2025;50(16):4437-4450
Glucocorticoid-induced osteoporosis(GIOP) is a serious metabolic bone disease caused by long-term application of glucocorticoids(GCs). Traditional Chinese medicine(TCM) has unique advantages in improving bone microstructure and antagonizing hormone toxicity. This paper systematically reviews the theoretical research, clinical application, and basic research progress of TCM intervention in GIOP. In terms of theoretical research, the theory of "kidney governing bone and generating marrow" indicates that the kidney is closely related to bone development, revealing that core pathogenesis of GIOP is Yin-Yang disharmony, which can be discussed using the theories of "Yin fire", "ministerial fire", and "Yang pathogen damaging Yin". Thus, regulating Yin and Yang is the basic principle to treat GIOP. In terms of clinical application, effective empirical prescriptions(such as Bushen Zhuanggu Decoction, Bushen Jiangu Decoction, and Zibu Ganshen Formula) and Chinese patent medicines(Gushukang Capsules, Hugu Capsules, Xianling Gubao Capsules, etc.) can effectively increase bone mineral density(BMD) and improve calcium and phosphorus metabolism. The combination of traditional Chinese and western medicine can reduce the risk of fracture and play an anti-GIOP role. In terms of basic research, it has been clarified that active ingredients of TCM(such as fraxetin, ginsenoside Rg_1, and salidroside) reduce bone loss and promote bone formation by inhibiting oxidative stress, ferroptosis, and other pathways, effectively improving bone homeostasis. Additionally, classical prescriptions(Modified Yiguan Decoction, Modified Qing'e Pills, Zuogui Pills, etc.) and Chinese patent medicines(Gushukang Granules, Lurong Jiangu Dropping Pills, Gubao Capsules, etc.) can improve bone marrow microcirculation, promote osteoblast differentiation, and inhibit bone cell apoptosis through multiple pathways, multiple targets, and multiple mechanisms. Through the above three aspects, the TCM research status on GIOP is elucidated in the expectation of providing reference for its diagnosis and treatment using traditional Chinese and western medicine treatment programs.
Osteoporosis/physiopathology*
;
Humans
;
Glucocorticoids/adverse effects*
;
Drugs, Chinese Herbal/administration & dosage*
;
Animals
;
Medicine, Chinese Traditional
;
Bone Density/drug effects*
9.A feasibility study of the EMO scoring system to guide proximal tibial transverse transport in treatment of diabetic foot wounds.
Wenhao LIU ; Jianyang SHAN ; Mingming ZHU ; Gen WEN ; Liang CHENG
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(3):326-331
OBJECTIVE:
The self-defined multidisciplinary (endocrinology, vascular surgery, and orthopedics) scoring system (EMO scoring system for short) was designed. The feasibility of the EMO scoring system to guide the proximal tibial transverse transport (TTT) for diabetic foot wounds was preliminarily explored.
METHODS:
Based on the current commonly used clinical criteria for diabetic foot judgment, expert consensus, guidelines, and related research progress in the treatment of diabetic foot wounds, combined with clinical experience, a set of EMO scoring systems including endocrinology, vascular surgery, and orthopedics was formulated. The criteria for selecting conservative treatment, TTT after baseline improvement, and TTT based on scoring results was proposed. A total of 56 patients with diabetic foot wounds who were admitted between September 2017 and July 2022 and met the selection criteria was taken as the study subjects. Among them, 28 patients were treated with TTT and 28 patients were treated conservatively. The patients were graded according to the EMO scoring system, the corresponding treatment methods were selected, and the actual treatment methods and results of the patients were compared.
RESULTS:
The EMO scoring system was formed through literature retrieval and clinical experiences. The system included three criteria, namely endocrinology (E), macrovascular disease (M), and orthopedics (O), which were divided into multiple subtypes according to the relevant evaluation items, and finally the diabetic foot wound was divided into 8 types, which correspondingly selected TTT, TTT after baseline improvement, and conservative treatment. All 56 patients were followed up 12 months after treatment. Among them, the wound healing rate of the TTT group was 85.71% (24/28), which was higher than that of the conservative treatment group [53.57% (15/28)]. At 12 week after treatment, CT angiography showed that there were more small blood vessels in the wound and ipsilateral limb in TTT group than in the conservative treatment group. Based on the EMO scoring system, 14 of the 56 patients needed conservative treatment, 29 patients needed TTT, and 13 patients needed TTT after baseline improvement. Compared with the clinical data of the patients, the wound healing rate of the patients judged to be TTT was 75.86% (22/29), of which 21 cases were actually treated with TTT, and the healing rate was 90.48%; 8 patients were treated conservatively, and the healing rate was 37.50%. The wound healing rate of the patients judged to be conservative treatment was 92.86% (13/14), of which 1 case was actually treated with TTT, and the healing rate was 100%; 13 cases were treated conservatively, and the healing rate was 92.31%; 1 case experienced minor amputation. The wound healing rate of the patients judged to TTT after baseline improvement was only 30.77% (4/13), of which 6 cases were actually treated with TTT, and the healing rate was 66.67%; 7 cases were treated conservatively, and the healing rate was 0.
CONCLUSION
EMO scoring system can comprehensively evaluate the diabetic foot wounds, and make personalized judgment on whether TTT treatment is feasible, so as to improve the level of diabetic foot wound treatment and the prognosis of patients.
Humans
;
Diabetic Foot/therapy*
;
Feasibility Studies
;
Male
;
Female
;
Middle Aged
;
Aged
;
Tibia/surgery*
;
Wound Healing
;
Adult
;
Treatment Outcome
;
Conservative Treatment
10.Clinical study on the effectiveness of bone acupuncture for alleviating pain and improving function in patients with degenerative lumbar spinal stenosis.
Chang-Xiao HAN ; Min-Shan FENG ; Jing-Hua GAO ; Xun-Lu YIN ; Guang-Wei LIU ; Hai-Bao WEN ; Jing LI ; Bo-Chen PENG ; Li-Guo ZHU
China Journal of Orthopaedics and Traumatology 2025;38(2):152-156
OBJECTIVE:
To assess the effectiveness of bone acupuncture in improving pain and function in degenerative lumbar spinal stenosis (DLSS) and compare it with Jiaji acupuncture.
METHODS:
From January to December 2023, 80 DLSS patients were treated with acupuncture and divided into bone acupuncture and Jiaji acupuncture groups. Among them, 40 patients in the bone acupuncture group included 15 males and 25 females, with a mean age of (60.60±6.98) years old;anthor 40 patients in the Jiaji acupuncture group included 16 males and 24 females, with a mean age of (61.48±9.55) years old. The Roland Morris disability questionnaire(RMDQ), walking distance, visual analogue scale(VAS), and the MOS item short from health survey(SF-36) of two groups at baseline, 2 weeks, 4 weeks, and 12 weeks post-treatment were compared.
RESULTS:
Eighty patients were followed up for 3 to 5 months with an average of (3.62±0.59) months. There was no significant differences in general data and the scores before treatment between two groups(P>0.05). The RMDQ scores in both groups decreased significantly at 2, 4 and 12 weeks after treatment compared with before treatment(P<0.05), at each time point after treatment, the decrease was more significant in the bone acupuncture group than in the Jiaji acupuncture group(P<0.05). The VAS of waist and leg in both groups was significantly lower at 2, 4 and 12 weeks after treatment that before treatment(P<0.05). At all time points after treatment, the waist VAS in the bone acupuncture group was reduced more significant than in the Jiaji acupuncture group(P<0.05);there was no significant difference in leg VAS at 2 and 12 weeks after treatment between two groups(P>0.05), the improvement was more significant in the bone acupuncture group in the 4 weeks after treatment than in the Jiaji acupuncture group. The SF-36 scores in both groups were significantly higher at 2, 4, and 12 weeks after treatment than before treatment(P<0.05);the SF-36 score raised more significant in the bone acupuncture group than in the Jiaji acupunture group(P<0.05). No significant difference in the walking distance between two groups at 2 weeks after treatment(P>0.05);the walking distance in the bone acupuncture group was significantly higher than that in the Jiaji acupuncture group at 4 and 12 weeks after treatment(P<0.05).
CONCLUSION
Bone-penetrating acupuncture moderately improves functional impairment, pain, and quality of life in patients with DLSS, showing better efficacy than Jiaji acupuncture.
Humans
;
Female
;
Male
;
Middle Aged
;
Acupuncture Therapy/methods*
;
Spinal Stenosis/physiopathology*
;
Aged
;
Lumbar Vertebrae/physiopathology*
;
Pain Management

Result Analysis
Print
Save
E-mail