1.Trends in Metabolically Unhealthy Obesity by Age, Sex, Race/Ethnicity, and Income among United States Adults, 1999 to 2018
Wen ZENG ; Weijiao ZHOU ; Junlan PU ; Juan LI ; Xiao HU ; Yuanrong YAO ; Shaomei SHANG
Diabetes & Metabolism Journal 2025;49(3):475-484
Background:
This study aimed to estimate temporal trends in metabolically unhealthy obesity (MUO) among United States (US) adults by age, sex, race/ethnicity, and income from 1999 to 2018.
Methods:
We included 17,230 non-pregnant adults from a nationally representative cross-sectional study, the National Health and Nutrition Examination Survey (NHANES). MUO was defined as body mass index ≥30 kg/m2 with any metabolic disorders in blood pressure, blood glucose, and blood lipids. The age-adjusted percentage of MUO was calculated, and linear regression models estimated trends in MUO.
Results:
The weighted mean age of adults was 47.28 years; 51.02% were male, 74.64% were non-Hispanic White. The age-adjusted percentage of MUO continuously increased in adults across all subgroups during 1999–2018, although with different magnitudes (all P<0.05 for linear trend). Adults aged 45 to 64 years consistently had higher percentages of MUO from 1999–2000 (34.25%; 95% confidence interval [CI], 25.85% to 42.66%) to 2017–2018 (42.03%; 95% CI, 35.09% to 48.97%) than the other two age subgroups (P<0.05 for group differences). The age-adjusted percentage of MUO was the highest among non-Hispanic Blacks while the lowest among non-Hispanic Whites in most cycles. Adults with high-income levels generally had lower MUO percentages from 1999–2000 (22.63%; 95% CI, 17.00% to 28.26%) to 2017–2018 (32.36%; 95% CI, 23.87% to 40.85%) compared with the other two subgroups.
Conclusion
This study detected a continuous linear increasing trend in MUO among US adults from 1999 to 2018. The persistence of disparities by age, race/ethnicity, and income is a cause for concern. This calls for implementing evidence-based, structural, and effective MUO prevention programs.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Trends in Metabolically Unhealthy Obesity by Age, Sex, Race/Ethnicity, and Income among United States Adults, 1999 to 2018
Wen ZENG ; Weijiao ZHOU ; Junlan PU ; Juan LI ; Xiao HU ; Yuanrong YAO ; Shaomei SHANG
Diabetes & Metabolism Journal 2025;49(3):475-484
Background:
This study aimed to estimate temporal trends in metabolically unhealthy obesity (MUO) among United States (US) adults by age, sex, race/ethnicity, and income from 1999 to 2018.
Methods:
We included 17,230 non-pregnant adults from a nationally representative cross-sectional study, the National Health and Nutrition Examination Survey (NHANES). MUO was defined as body mass index ≥30 kg/m2 with any metabolic disorders in blood pressure, blood glucose, and blood lipids. The age-adjusted percentage of MUO was calculated, and linear regression models estimated trends in MUO.
Results:
The weighted mean age of adults was 47.28 years; 51.02% were male, 74.64% were non-Hispanic White. The age-adjusted percentage of MUO continuously increased in adults across all subgroups during 1999–2018, although with different magnitudes (all P<0.05 for linear trend). Adults aged 45 to 64 years consistently had higher percentages of MUO from 1999–2000 (34.25%; 95% confidence interval [CI], 25.85% to 42.66%) to 2017–2018 (42.03%; 95% CI, 35.09% to 48.97%) than the other two age subgroups (P<0.05 for group differences). The age-adjusted percentage of MUO was the highest among non-Hispanic Blacks while the lowest among non-Hispanic Whites in most cycles. Adults with high-income levels generally had lower MUO percentages from 1999–2000 (22.63%; 95% CI, 17.00% to 28.26%) to 2017–2018 (32.36%; 95% CI, 23.87% to 40.85%) compared with the other two subgroups.
Conclusion
This study detected a continuous linear increasing trend in MUO among US adults from 1999 to 2018. The persistence of disparities by age, race/ethnicity, and income is a cause for concern. This calls for implementing evidence-based, structural, and effective MUO prevention programs.
6.Trends in Metabolically Unhealthy Obesity by Age, Sex, Race/Ethnicity, and Income among United States Adults, 1999 to 2018
Wen ZENG ; Weijiao ZHOU ; Junlan PU ; Juan LI ; Xiao HU ; Yuanrong YAO ; Shaomei SHANG
Diabetes & Metabolism Journal 2025;49(3):475-484
Background:
This study aimed to estimate temporal trends in metabolically unhealthy obesity (MUO) among United States (US) adults by age, sex, race/ethnicity, and income from 1999 to 2018.
Methods:
We included 17,230 non-pregnant adults from a nationally representative cross-sectional study, the National Health and Nutrition Examination Survey (NHANES). MUO was defined as body mass index ≥30 kg/m2 with any metabolic disorders in blood pressure, blood glucose, and blood lipids. The age-adjusted percentage of MUO was calculated, and linear regression models estimated trends in MUO.
Results:
The weighted mean age of adults was 47.28 years; 51.02% were male, 74.64% were non-Hispanic White. The age-adjusted percentage of MUO continuously increased in adults across all subgroups during 1999–2018, although with different magnitudes (all P<0.05 for linear trend). Adults aged 45 to 64 years consistently had higher percentages of MUO from 1999–2000 (34.25%; 95% confidence interval [CI], 25.85% to 42.66%) to 2017–2018 (42.03%; 95% CI, 35.09% to 48.97%) than the other two age subgroups (P<0.05 for group differences). The age-adjusted percentage of MUO was the highest among non-Hispanic Blacks while the lowest among non-Hispanic Whites in most cycles. Adults with high-income levels generally had lower MUO percentages from 1999–2000 (22.63%; 95% CI, 17.00% to 28.26%) to 2017–2018 (32.36%; 95% CI, 23.87% to 40.85%) compared with the other two subgroups.
Conclusion
This study detected a continuous linear increasing trend in MUO among US adults from 1999 to 2018. The persistence of disparities by age, race/ethnicity, and income is a cause for concern. This calls for implementing evidence-based, structural, and effective MUO prevention programs.
7.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
8.Trends in Metabolically Unhealthy Obesity by Age, Sex, Race/Ethnicity, and Income among United States Adults, 1999 to 2018
Wen ZENG ; Weijiao ZHOU ; Junlan PU ; Juan LI ; Xiao HU ; Yuanrong YAO ; Shaomei SHANG
Diabetes & Metabolism Journal 2025;49(3):475-484
Background:
This study aimed to estimate temporal trends in metabolically unhealthy obesity (MUO) among United States (US) adults by age, sex, race/ethnicity, and income from 1999 to 2018.
Methods:
We included 17,230 non-pregnant adults from a nationally representative cross-sectional study, the National Health and Nutrition Examination Survey (NHANES). MUO was defined as body mass index ≥30 kg/m2 with any metabolic disorders in blood pressure, blood glucose, and blood lipids. The age-adjusted percentage of MUO was calculated, and linear regression models estimated trends in MUO.
Results:
The weighted mean age of adults was 47.28 years; 51.02% were male, 74.64% were non-Hispanic White. The age-adjusted percentage of MUO continuously increased in adults across all subgroups during 1999–2018, although with different magnitudes (all P<0.05 for linear trend). Adults aged 45 to 64 years consistently had higher percentages of MUO from 1999–2000 (34.25%; 95% confidence interval [CI], 25.85% to 42.66%) to 2017–2018 (42.03%; 95% CI, 35.09% to 48.97%) than the other two age subgroups (P<0.05 for group differences). The age-adjusted percentage of MUO was the highest among non-Hispanic Blacks while the lowest among non-Hispanic Whites in most cycles. Adults with high-income levels generally had lower MUO percentages from 1999–2000 (22.63%; 95% CI, 17.00% to 28.26%) to 2017–2018 (32.36%; 95% CI, 23.87% to 40.85%) compared with the other two subgroups.
Conclusion
This study detected a continuous linear increasing trend in MUO among US adults from 1999 to 2018. The persistence of disparities by age, race/ethnicity, and income is a cause for concern. This calls for implementing evidence-based, structural, and effective MUO prevention programs.
9.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
10.Complications among patients undergoing orthopedic surgery after infection with the SARS-CoV-2 Omicron strain and a preliminary nomogram for predicting patient outcomes.
Liang ZHANG ; Wen-Long GOU ; Ke-Yu LUO ; Jun ZHU ; Yi-Bo GAN ; Xiang YIN ; Jun-Gang PU ; Huai-Jian JIN ; Xian-Qing ZHANG ; Wan-Fei WU ; Zi-Ming WANG ; Yao-Yao LIU ; Yang LI ; Peng LIU
Chinese Journal of Traumatology 2025;28(6):445-453
PURPOSE:
The rate of complications among patients undergoing surgery has increased due to infection with SARS-CoV-2 and other variants of concern. However, Omicron has shown decreased pathogenicity, raising questions about the risk of postoperative complications among patients who are infected with this variant. This study aimed to investigate complications and related factors among patients with recent Omicron infection prior to undergoing orthopedic surgery.
METHODS:
A historical control study was conducted. Data were collected from all patients who underwent surgery during 2 distinct periods: (1) between Dec 12, 2022 and Jan 31, 2023 (COVID-19 positive group), (2) between Dec 12, 2021 and Jan 31, 2022 (COVID-19 negative control group). The patients were at least 18 years old. Patients who received conservative treatment after admission or had high-risk diseases or special circumstances (use of anticoagulants before surgery) were excluded from the study. The study outcomes were the total complication rate and related factors. Binary logistic regression analysis was used to identify related factors, and odds ratio (OR) and 95% confidence interval (CI) were calculated to assess the impact of COVID-19 infection on complications.
RESULTS:
In the analysis, a total of 847 patients who underwent surgery were included, with 275 of these patients testing positive for COVID-19 and 572 testing negative. The COVID-19-positive group had a significantly higher rate of total complications (11.27%) than the control group (4.90%, p < 0.001). After adjusting for relevant factors, the OR was 3.08 (95% CI: 1.45-6.53). Patients who were diagnosed with COVID-19 at 3-4 weeks (OR = 0.20 (95% CI: 0.06-0.59), p = 0.005), 5-6 weeks (OR = 0.16 (95% CI: 0.04-0.59), p = 0.010), or ≥7 weeks (OR = 0.26 (95% CI: 0.06-1.02), p = 0.069) prior to surgery had a lower risk of complications than those who were diagnosed at 0-2 weeks prior to surgery. Seven factors (age, indications for surgery, time of operation, time of COVID-19 diagnosis prior to surgery, C-reactive protein levels, alanine transaminase levels, and aspartate aminotransferase levels) were found to be associated with complications; thus, these factors were used to create a nomogram.
CONCLUSION
Omicron continues to be a significant factor in the incidence of postoperative complications among patients undergoing orthopedic surgery. By identifying the factors associated with these complications, we can determine the optimal surgical timing, provide more accurate prognostic information, and offer appropriate consultation for orthopedic surgery patients who have been infected with Omicron.
Humans
;
COVID-19/complications*
;
Male
;
Female
;
Middle Aged
;
Postoperative Complications/epidemiology*
;
SARS-CoV-2
;
Orthopedic Procedures/adverse effects*
;
Aged
;
Nomograms
;
Adult
;
Retrospective Studies
;
Risk Factors

Result Analysis
Print
Save
E-mail