1.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
2.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
3.Parkinsonism in Cerebral Autosomal Dominant Arteriopathy With Subcortical Infarcts and Leukoencephalopathy: Clinical Features and Biomarkers
Chih-Hao CHEN ; Te-Wei WANG ; Yu-Wen CHENG ; Yung-Tsai CHU ; Mei-Fang CHENG ; Ya-Fang CHEN ; Chin-Hsien LIN ; Sung-Chun TANG
Journal of Stroke 2025;27(1):122-127
4.Microdissection testicular sperm extraction for men with nonobstructive azoospermia who have a testicular tumor in situ at the time of sperm retrieval.
Hao-Cheng LIN ; Wen-Hao TANG ; Yan CHEN ; Yang-Yi FANG ; Kai HONG
Asian Journal of Andrology 2025;27(3):423-427
Oncological microdissection testicular sperm extraction (onco-micro-TESE) represents a significant breakthrough for patients with nonobstructive azoospermia (NOA) and a concomitant in situ testicular tumor, to be managed at the time of sperm retrieval. Onco-micro-TESE addresses the dual objectives of treating both infertility and the testicular tumor simultaneously. The technique is intricate, necessitating a comprehensive understanding of testicular anatomy, physiology, tumor biology, and advanced microsurgical methods. It aims to carefully extract viable spermatozoa while minimizing the risk of tumor dissemination. This review encapsulates the procedural intricacies, evaluates success determinants, including tumor pathology and spermatogenic tissue health, and discusses the implementation of imaging techniques for enhanced surgical precision. Ethical considerations are paramount, as the procedure implicates complex decision-making that weighs the potential oncological risks against the profound desire for fatherhood using the male gametes. The review aims to provide a holistic overview of onco-micro-TESE, detailing methodological advances, clinical outcomes, and the ethical landscape, thus offering an indispensable resource for clinicians navigating this multifaceted clinical scenario.
Humans
;
Male
;
Azoospermia/therapy*
;
Testicular Neoplasms/pathology*
;
Sperm Retrieval
;
Microdissection/methods*
;
Testis/surgery*
5.The Enhancing Effects and Underlying Mechanism of Ionizing Radiation on Adipogenic Differentiation of Mesenchymal Stem Cells via Regulating Oxidative Stress Pathway.
Fu-Hao YU ; Bo-Feng YIN ; Pei-Lin LI ; Xiao-Tong LI ; Jia-Yi TIAN ; Run-Xiang XU ; Jie TANG ; Xiao-Yu ZHANG ; Wen-Jing ZHANG ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):246-254
OBJECTIVE:
To investigate the effects and underlying mechanism of ionizing radiation on the adipogenic of mesenchymal stem cells (MSCs).
METHODS:
Mouse MSCs were cultured in vitro and treated with 2 Gy and 6 Gy radiation with 60Co, and the radiation dose rate was 0.98 Gy/min. Bulk RNA-seq was performed on control and irradiated MSCs. The changes of adipogenic differentiation and oxidative stress pathways of MSC were revealed by bioinformatics analysis. Oil Red O staining was used to detect the adipogenic differentiation ability of MSCs in vitro, and real-time fluorescence quantitative PCR (qPCR) was used to detect the expression differences of key regulatory factors Cebpa, Lpl and Pparg after radiation treatment. At the same time, qPCR and Western blot were used to detect the effect of inhibition of Nrf2, a key factor of antioxidant stress pathway, on the expression of key regulatory factors of adipogenesis. Moreover, the species conservation of the irradiation response of human bone marrow MSCs and mouse MSC was determined by qPCR.
RESULTS:
Bulk RNA-seq suggested that ionizing radiation promotes adipogenic differentiation of MSCs and up-regulation of oxidative stress-related genes and pathways. The results of Oil Red O staining and qPCR showed that ionizing radiation promoted the adipogenesis of MSCs, with high expression of Cebpa, Lpl and Pparg, as well as oxidative stress-related gene Nrf2. Nrf2 pathway inhibitors could further enhance the adipogenesis of MSCs in bone marrow after radiation. Notably, the similar regulation of oxidative pathways and enhanced adipogenesis post irradiation were observed in human bone marrow MSCs. In addition, irradiation exposure led to up-regulated mRNA expression of interleukin-6 and down-regulated mRNA expression of colony stimulating factor 2 in human bone marrow MSCs.
CONCLUSION
Ionizing radiation promotes adipogenesis of MSCs in mice, and oxidative stress pathway participates in this effect, blocking Nrf2 further promotes the adipogenesis of MSCs. Additionally, irradiation activates oxidative pathways and promotes adipogenic differentiation of human bone marrow MSCs.
Mesenchymal Stem Cells/cytology*
;
Oxidative Stress/radiation effects*
;
Animals
;
Adipogenesis/radiation effects*
;
Mice
;
Radiation, Ionizing
;
Cell Differentiation/radiation effects*
;
Humans
;
NF-E2-Related Factor 2/metabolism*
;
PPAR gamma
;
Cells, Cultured
6.Establishment and Application of an in Vitro Cellular Model of Adipogenic Differentiation of Bone Marrow Mesenchymal Stem Cells with Serum Injury in aGVHD Mouse.
Run-Xiang XU ; Pei-Lin LI ; Jia-Yi TIAN ; Jie TANG ; Bo-Feng YIN ; Fu-Hao YU ; Fei-Yan WANG ; Xiao-Tong LI ; Xiao-Yu ZHANG ; Wen-Rong XIA ; Heng ZHU ; Li DING
Journal of Experimental Hematology 2025;33(1):255-261
OBJECTIVE:
To establish an in vitro cell model simulating acute graft-versus-host disease (aGVHD) bone marrow microenvironment injury with the advantage of mouse serum of aGVHD model and explore the effect of serum of aGVHD mouse on the adipogenic differentiation ability of mesenchymal stem cells (MSCs).
METHODS:
The 6-8-week-old C57BL/6N female mice and BALB/c female mice were used as the donor and recipient mice of the aGVHD model, respectively. Bone marrow transplantation (BMT) mouse model (n=20) was established by being injected with bone marrow cells (1×107 per mouse) from donor mice within 4-6 hours after receiving a lethal dose (8.0 Gy, 72.76 cGy/min) of γ ray general irradiation. A mouse model of aGVHD (n=20) was established by infusing a total of 0.4 ml of a mixture of donor mouse-derived bone marrow cells (1×107 per mouse) and spleen lymphocytes (2×106 per mouse). The blood was removed from the eyeballs and the mouse serum was aspirated on the 7th day after modeling. Bone marrow-derived MSCs were isolated from 1-week-old C57BL/6N male mice and incubated with 2%, 5% and 10% BMT mouse serum and aGVHD mouse serum in the medium, respectively. The effect of serum in the two groups on the in vitro adipogenic differentiation ability of mouse MSCs was detected by Oil Red O staining. The expression levels of related proteins PPARγ and CEBPα were detected by Western blot. The expression differences of key adipogenic transcription factors including PPARγ, CEBPα, FABP4 and LPL were determined by real-time quantitative PCR (RT-qPCR).
RESULTS:
An in vitro cell model simulating the damage of bone marrow microenvironment in mice with aGVHD was successfully established. Oil Red O staining showed that the number of orange-red fatty droplets was significantly reduced and the adipogenic differentiation ability of MSC was impaired at aGVHD serum concentration of 10% compared with BMT serum. Western blot experiments showed that adipogenesis-related proteins PPARγ and CEBPα expressed in MSCs were down-regulated. Further RT-qPCR assay showed that the production of PPARγ, CEBPα, FABP4 and LPL, the key transcription factors for adipogenic differentiation of MSC, were significantly reduced.
CONCLUSION
The adipogenic differentiation capacity of MSCs is inhibited by aGVHD mouse serum.
Animals
;
Mesenchymal Stem Cells/cytology*
;
Mice
;
Mice, Inbred BALB C
;
Mice, Inbred C57BL
;
Adipogenesis
;
Female
;
Cell Differentiation
;
Graft vs Host Disease/blood*
;
Bone Marrow Cells/cytology*
;
PPAR gamma/metabolism*
;
Disease Models, Animal
;
CCAAT-Enhancer-Binding Protein-alpha/metabolism*
7.Aldolase A accelerates hepatocarcinogenesis by refactoring c-Jun transcription.
Xin YANG ; Guang-Yuan MA ; Xiao-Qiang LI ; Na TANG ; Yang SUN ; Xiao-Wei HAO ; Ke-Han WU ; Yu-Bo WANG ; Wen TIAN ; Xin FAN ; Zezhi LI ; Caixia FENG ; Xu CHAO ; Yu-Fan WANG ; Yao LIU ; Di LI ; Wei CAO
Journal of Pharmaceutical Analysis 2025;15(7):101169-101169
Hepatocellular carcinoma (HCC) expresses abundant glycolytic enzymes and displays comprehensive glucose metabolism reprogramming. Aldolase A (ALDOA) plays a prominent role in glycolysis; however, little is known about its role in HCC development. In the present study, we aim to explore how ALDOA is involved in HCC proliferation. HCC proliferation was markedly suppressed both in vitro and in vivo following ALDOA knockout, which is consistent with ALDOA overexpression encouraging HCC proliferation. Mechanistically, ALDOA knockout partially limits the glycolytic flux in HCC cells. Meanwhile, ALDOA translocated to nuclei and directly interacted with c-Jun to facilitate its Thr93 phosphorylation by P21-activated protein kinase; ALDOA knockout markedly diminished c-Jun Thr93 phosphorylation and then dampened c-Jun transcription function. A crucial site Y364 mutation in ALDOA disrupted its interaction with c-Jun, and Y364S ALDOA expression failed to rescue cell proliferation in ALDOA deletion cells. In HCC patients, the expression level of ALDOA was correlated with the phosphorylation level of c-Jun (Thr93) and poor prognosis. Remarkably, hepatic ALDOA was significantly upregulated in the promotion and progression stages of diethylnitrosamine-induced HCC models, and the knockdown of A ldoa strikingly decreased HCC development in vivo. Our study demonstrated that ALDOA is a vital driver for HCC development by activating c-Jun-mediated oncogene transcription, opening additional avenues for anti-cancer therapies.
8.Research Progress in the Impact of Accelerated Rehabilitation on Bone Tunnel Enlargement After Anterior Cruciate Ligament Reconstruction.
Wen-Bo TANG ; Feng GAO ; Xiao-Han ZHANG ; Bing-Ying ZHANG ; Hao DUAN ; Jing-Bin ZHOU
Acta Academiae Medicinae Sinicae 2025;47(4):634-643
This paper explores the impacts of accelerated rehabilitation protocols following anterior cruciate ligament reconstruction(ACLR)on bone tunnel enlargement(BTE).While accelerated rehabilitation can shorten the recovery time and improve the knee function,it may increase the risk of BTE.In the early rehabilitation phase after ACLR,excessive early weight-bearing and rapid progression of knee flexion angles should be avoided,along with the proper use of braces.Continuous passive motion is not recommended in the early phase post-ACLR to prevent potential effects on BTE.Further research is needed to investigate the mechanisms of BTE and develop more effective rehabilitation strategies.This will help to select appropriate rehabilitation protocols for patients and balance functional recovery with the risk of BTE,thereby reducing the revision rate and improving postoperative outcomes.
Humans
;
Anterior Cruciate Ligament Reconstruction/rehabilitation*
9.A case report of pachydermoperiostosis combined with posterior cruciate ligament femoral insertion avulsion fracture and literature review
Song WANG ; Gengao WEN ; Feng WAN ; Jinlong TANG ; Hao LI ; Wei ZHENG
Chinese Journal of Orthopaedics 2024;44(1):41-47
This study reports a case of pachydermoperiostosis combined with posterior cruciate ligament femoral insertion avulsion fracture. The avulsion fracture was treated by arthroscopic surgery of suspension fixation. The symptom of the pachydermoperiostosis was relieved by non-steroidal anti-inflammatory drugs. Literature search and review were carried out by searching the key words of ("pachydermoperiostosis" OR "primary hypertrophic osteoarthropathy" OR "Touraine-solente-gole syndrome") OR ("posterior cruciate ligament" AND "avulsion fracture"). This patient was confirmed to be the first case reported suffering both diseases mentioned above. For the search results, there were 14 articles on posterior cruciate ligament femoral insertion avulsion fracture and 7 articles on pachydermoperiostosis. This study focused on the impact of pachydermoperiostosis on bone quality, possible factors for the avulsion fracture, and the advantages of arthroscopic surgery. Pachydermoperiostosis is a rare autosomal recessive disease. The incidence of posterior cruciate ligament femoral insertion avulsion fracture is extremely low. It is a seriously sports injury affecting the stability of the knee joint. Standardized surgical treatment can help patients obtain a satisfactory clinical outcome.
10.Generation and Evaluation of Human Umbilical Cord Derived Mesenchymal Stem Cells with Antioxidant Capacity
Xiao-Yu ZHANG ; Pei-Lin LI ; Jie TANG ; Zhi-Ling LI ; Rui-Cong HAO ; Xiao-Tong LI ; Wen-Jing ZHANG ; Shi-Rong ZHAO ; Li DING ; Wen-Qing WU ; Heng ZHU
Journal of Experimental Hematology 2024;32(6):1888-1895
Objective:To prepare mesenchymal stem cells with antioxidant capacity (AO-MSC ) from human umbilical cords and evaluate its cell biological properties.Methods:In control group,mesenchymal stem cells (MSC) were isolated by digesting human umbilical cord Wharton's Jelly tissues with 0.2% collagenase Ⅱ,and the released cells were collected and cultured in an animal serum-free culture medium.In AO-MSC group,incompletely collagenase Ⅱ-digested tissue debris were allowed to adhere to flusk flat bottoms and the AO-MSC was harvested by adherent culture. The conventional digestion and culture method was used as control.MSC colony forming ability was evaluated by fibroblast colony forming assay (CFU-F).MSC proliferative capacity was evaluated by CCK-8 assay.The MSC surface markers were detected by using flow cytometry and immunofluorescence staining.The adipogenic and osteogenic capacity of MSC was evaluated by multi-differentiation in vitro,and the mRNA expression of genes that control adipogenic and osteogenic differentiation was detected by real-time fluorescence quantitative PCR (RT-qPCR );Moreover,the mRNA expression of antioxidant substances such as SOD-1,GSH,GAT,and NQO1 in MSC was also evaluated by RT-qPCR.Results:The AO-MSC isolated by this strategy reached a confluence of 80%-90% at around 18 days and grew in a swirling pattern.Flow cytometry and immunofluorescence staining assays showed that CD73,CD29,CD105,CD90 were highly expressed and CD31,CD45,HLA-DR were scarcely expressed in AO-MSC.AO-MSC exhibited stronger self-renewal and differentiation ability compared to MSC.However,the in vitro adipogenic-osteogenic capacity of MSC in the control group was stronger than that of AO-MSC.RT-qPCR assay showed that AO-MSC expressed higher mRNA levels of antioxidant substances compared to MSC.Conclusion:Human AO-MSC is successfully prepared from human umbilical cord without animal serum.

Result Analysis
Print
Save
E-mail