1.The Mechanisms of Quercetin in Improving Alzheimer’s Disease
Yu-Meng ZHANG ; Yu-Shan TIAN ; Jie LI ; Wen-Jun MU ; Chang-Feng YIN ; Huan CHEN ; Hong-Wei HOU
Progress in Biochemistry and Biophysics 2025;52(2):334-347
Alzheimer’s disease (AD) is a prevalent neurodegenerative condition characterized by progressive cognitive decline and memory loss. As the incidence of AD continues to rise annually, researchers have shown keen interest in the active components found in natural plants and their neuroprotective effects against AD. Quercetin, a flavonol widely present in fruits and vegetables, has multiple biological effects including anticancer, anti-inflammatory, and antioxidant. Oxidative stress plays a central role in the pathogenesis of AD, and the antioxidant properties of quercetin are essential for its neuroprotective function. Quercetin can modulate multiple signaling pathways related to AD, such as Nrf2-ARE, JNK, p38 MAPK, PON2, PI3K/Akt, and PKC, all of which are closely related to oxidative stress. Furthermore, quercetin is capable of inhibiting the aggregation of β‑amyloid protein (Aβ) and the phosphorylation of tau protein, as well as the activity of β‑secretase 1 and acetylcholinesterase, thus slowing down the progression of the disease.The review also provides insights into the pharmacokinetic properties of quercetin, including its absorption, metabolism, and excretion, as well as its bioavailability challenges and clinical applications. To improve the bioavailability and enhance the targeting of quercetin, the potential of quercetin nanomedicine delivery systems in the treatment of AD is also discussed. In summary, the multifaceted mechanisms of quercetin against AD provide a new perspective for drug development. However, translating these findings into clinical practice requires overcoming current limitations and ongoing research. In this way, its therapeutic potential in the treatment of AD can be fully utilized.
2.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
3.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
4.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
5.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
6.Predicting Clinically Significant Prostate Cancer Using Urine Metabolomics via Liquid Chromatography Mass Spectrometry
Chung-Hsin CHEN ; Hsiang-Po HUANG ; Kai-Hsiung CHANG ; Ming-Shyue LEE ; Cheng-Fan LEE ; Chih-Yu LIN ; Yuan Chi LIN ; William J. HUANG ; Chun-Hou LIAO ; Chih-Chin YU ; Shiu-Dong CHUNG ; Yao-Chou TSAI ; Chia-Chang WU ; Chen-Hsun HO ; Pei-Wen HSIAO ; Yeong-Shiau PU ;
The World Journal of Men's Health 2025;43(2):376-386
Purpose:
Biomarkers predicting clinically significant prostate cancer (sPC) before biopsy are currently lacking. This study aimed to develop a non-invasive urine test to predict sPC in at-risk men using urinary metabolomic profiles.
Materials and Methods:
Urine samples from 934 at-risk subjects and 268 treatment-naïve PC patients were subjected to liquid chromatography/mass spectrophotometry (LC-MS)-based metabolomics profiling using both C18 and hydrophilic interaction liquid chromatography (HILIC) column analyses. Four models were constructed (training cohort [n=647]) and validated (validation cohort [n=344]) for different purposes. Model I differentiates PC from benign cases. Models II, III, and a Gleason score model (model GS) predict sPC that is defined as National Comprehensive Cancer Network (NCCN)-categorized favorable-intermediate risk group or higher (Model II), unfavorable-intermediate risk group or higher (Model III), and GS ≥7 PC (model GS), respectively. The metabolomic panels and predicting models were constructed using logistic regression and Akaike information criterion.
Results:
The best metabolomic panels from the HILIC column include 25, 27, 28 and 26 metabolites in Models I, II, III, and GS, respectively, with area under the curve (AUC) values ranging between 0.82 and 0.91 in the training cohort and between 0.77 and 0.86 in the validation cohort. The combination of the metabolomic panels and five baseline clinical factors that include serum prostate-specific antigen, age, family history of PC, previously negative biopsy, and abnormal digital rectal examination results significantly increased AUCs (range 0.88–0.91). At 90% sensitivity (validation cohort), 33%, 34%, 41%, and 36% of unnecessary biopsies were avoided in Models I, II, III, and GS, respectively. The above results were successfully validated using LC-MS with the C18 column.
Conclusions
Urinary metabolomic profiles with baseline clinical factors may accurately predict sPC in men with elevated risk before biopsy.
7.Expression and Clinical Significance of PLCβ4 Gene in Hepatocellular Carcinoma Analyzed Based on TCGA Database and Experimental Validation
Limei WEN ; Yali GUO ; Qiang HOU ; Dongxuan ZHENG ; Wu DAI ; Xiang GAO ; Jianhua YANG ; Junping HU
Cancer Research on Prevention and Treatment 2025;52(6):502-510
Objective To analyze the PLCβ4 gene mRNA expression and its clinical significance in hepatocellular carcinoma (HCC) based on TCGA database. Methods Based on the data on 424 clinical samples (including 374 cases of HCC tissues and 50 cases of nontumor liver tissues) in the TCGA database, Kaplan–Meier method, Cox regression analysis, and immune infiltration analysis were performed to evaluate the relationship between PLCβ4 gene and the clinical characteristics and survival prognosis of HCC patients. Correlation analysis between PLCβ4 gene and 24 types of immune cells was applied to investigate the relationship between PLCβ4 gene and immune cell infiltration and mRNA expression level of TP53 gene, a high-frequency mutation gene in HCC. In addition, paraffin sections of highly, moderately, and poorly differentiated tumor tissues and normal liver tissues from HCC patients were collected. The histopathological observation was carried out via HE staining method, and the expression levels of PLCβ4 and Ki-67 proteins in each clinical sample were verified through the immunohistochemical method. Results The expression level of PLCβ4 gene in HCC was significantly higher than that in normal tissues (P<0.01), and all patients in the PLCβ4 high-expression group had a significantly longer overall survival than those in the low-expression group (P<0.05), which suggested that PLCβ4 substantially affected the prognosis of HCC patients. Correlation analysis showed that the expression level of PLCβ4 gene was highly correlated with immune cell infiltration and the expression level of TP53 gene. As verified by clinical sample experiments, HE staining experiments and immunohistochemical results revealed that PLCβ4 gene expression in HCC tissue samples was significantly higher than that in normal tissues (P<0.001), and it was negatively correlated with the degree of differentiation. Conclusion PLCβ4 may serve as an independent prognostic factor in HCC and is expected to be a novel molecular target for HCC treatment.
8.Development and multicenter validation of machine learning models for predicting postoperative pulmonary complications after neurosurgery.
Ming XU ; Wenhao ZHU ; Siyu HOU ; Hongzhi XU ; Jingwen XIA ; Liyu LIN ; Hao FU ; Mingyu YOU ; Jiafeng WANG ; Zhi XIE ; Xiaohong WEN ; Yingwei WANG
Chinese Medical Journal 2025;138(17):2170-2179
BACKGROUND:
Postoperative pulmonary complications (PPCs) are major adverse events in neurosurgical patients. This study aimed to develop and validate machine learning models predicting PPCs after neurosurgery.
METHODS:
PPCs were defined according to the European Perioperative Clinical Outcome standards as occurring within 7 postoperative days. Data of cases meeting inclusion/exclusion criteria were extracted from the anesthesia information management system to create three datasets: The development (data of Huashan Hospital, Fudan University from 2018 to 2020), temporal validation (data of Huashan Hospital, Fudan University in 2021) and external validation (data of other three hospitals in 2023) datasets. Machine learning models of six algorithms were trained using either 35 retrievable and plausible features or the 11 features selected by Lasso regression. Temporal validation was conducted for all models and the 11-feature models were also externally validated. Independent risk factors were identified and feature importance in top models was analyzed.
RESULTS:
PPCs occurred in 712 of 7533 (9.5%), 258 of 2824 (9.1%), and 207 of 2300 (9.0%) patients in the development, temporal validation and external validation datasets, respectively. During cross-validation training, all models except Bayes demonstrated good discrimination with an area under the receiver operating characteristic curve (AUC) of 0.840. In temporal validation of full-feature models, deep neural network (DNN) performed the best with an AUC of 0.835 (95% confidence interval [CI]: 0.805-0.858) and a Brier score of 0.069, followed by Logistic regression (LR), random forest and XGBoost. The 11-feature models performed comparable to full-feature models with very close but statistically significantly lower AUCs, with the top models of DNN and LR in temporal and external validations. An 11-feature nomogram was drawn based on the LR algorithm and it outperformed the minimally modified Assess respiratory RIsk in Surgical patients in CATalonia (ARISCAT) and Laparoscopic Surgery Video Educational Guidelines (LAS VEGAS) scores with a higher AUC (LR: 0.824, ARISCAT: 0.672, LAS: 0.663). Independent risk factors based on multivariate LR mostly overlapped with Lasso-selected features, but lacked consistency with the important features using the Shapley additive explanation (SHAP) method of the LR model.
CONCLUSIONS:
The developed models, especially the DNN model and the nomogram, had good discrimination and calibration, and could be used for predicting PPCs in neurosurgical patients. The establishment of machine learning models and the ascertainment of risk factors might assist clinical decision support for improving surgical outcomes.
TRIAL REGISTRATION
ChiCTR 2100047474; https://www.chictr.org.cn/showproj.html?proj=128279 .
Adult
;
Aged
;
Female
;
Humans
;
Male
;
Middle Aged
;
Algorithms
;
Lung Diseases/etiology*
;
Machine Learning
;
Neurosurgical Procedures/adverse effects*
;
Postoperative Complications/diagnosis*
;
Risk Factors
;
ROC Curve
9.Mechanism of Xiangmei Pills in treating ulcerative colitis based on UHPLC-Q-Orbitrap HRMS and 16S rDNA sequencing of intestinal flora.
Ya-Fang HOU ; Rui-Sheng WANG ; Zhen-Ling ZHANG ; Wen-Wen CAO ; Meng ZHAO ; Ya-Hong ZHAO
China Journal of Chinese Materia Medica 2025;50(4):882-895
The efficacy of Xiangmei Pills on rats with ulcerative colitis(UC) was investigated by characterizing the spectrum of the active chemical components of Xiangmei Pills. Rapid identification and classification of the main chemical components were performed,and the therapeutic effects of Xiangmei Pills on the proteins and intestinal flora of UC rats were analyzed to explore the mechanism of its action in treating UC. Fifty SD rats were acclimatized to feeding for 3 d and randomly divided into blank group, model group,mesalazine group(0. 4 g·kg~(-1)), low-dose group of Xiangmei Pills(1. 89 g·kg~(-1)), and high-dose group of Xiangmei Pills(5. 67 g·kg~(-1)), with 10 rats in each group. 5% dextrose sodium sulfate(DSS) was given by gavage to induce the male SD rat model with UC,and the corresponding medicinal solution was given by gavage after 10 days, respectively. The therapeutic effect of Xiangmei Pills on rats with UC was evaluated according to body mass, disease activity index(DAI), and hematoxylin-eosin(HE) staining, and the histopathological changes in the colon were observed. Ultra-high performance liquid chromatography-quadrupole/electrostatic field orbitrap high-resolution mass spectrometry(UHPLC-Q-Orbitrap HRMS) technique was used to rapidly and accurately identify the main chemical constituents of Xiangmei Pills. Immunohistochemistry was used to detect the expression of aryl hydrocarbon receptor(AhR),interferon-γ(IFN-γ), mucin-2(MUC-2), and cytochrome P450 1A1(CYP1A1) in colon tissue. Interleukin-22(IL-22) expression in colon tissue was detected by immunofluorescence. The 16S r DNA high-throughput sequencing technique was used to study the modulatory effects of Xiangmei Pills on the intestinal flora structure of rats with UC. Pharmacodynamic results showed that compared with that of the blank group, the colon tissue of the model group was congested, and ulcers were visible in the mucosa; compared with that in the model group, the histopathology of the colon of the rats with UC in the groups of Xiangmei Pills were improved, with scattered ulcers and reduced inflammatory cell infiltration. Chemical analysis showed that a total of 45 components were identified by mass spectrometry information, including 15 phenolic acids, 8 coumarins, 15 organic acids, 3 amino acids, 2 flavonoids, and 2 other components. Compared with those in the blank group, the levels of Ah R, CYP1A1, MUC-2, and IL-22 proteins in the colon tissue of rats in the model group were significantly decreased, and the level of IFN-γ protein was significantly increased; the intestinal flora of rats in the model group was disorganized, with a decrease in the abundance of the flora; the relative abundance of Bacteroidetes,unclassified genera of Ascomycetes, Prevotella of the Prevotella family, and Prevotella decreased significantly, and that of Firmicutes decreased, but the difference was not statistically significant. The relative abundance of Bacteroidetes, Bifidobacterium, and Lactobacillus increased significantly. Compared with those of the model group, the levels of Ah R, CYP1A1, MUC-2, and IL-22proteins in the colonic tissue of the groups of Xiangmei Pills were significantly higher, and the levels of IFN-γ proteins were significantly lower. The recovery of the intestinal flora was accelerated, and the diversity of the intestinal flora was significantly increased. The relative abundance of Bacteroidetes was significantly increased, and that of unclassified genera of Ascomycetes,Lactobacillus, Prevotella of the Prevotella family, and Prevotella was significantly increased. The relative abundance of Bacteroidetes and Bifidobacterium was significantly decreased. This study demonstrated that Xiangmei Pills can effectively treat UC, mainly through the phenolic acid and organic acid components to stimulate the intestinal barrier, regulate protein expression and the relative abundance and diversity of intestinal flora, and play a role in the treatment of UC.
Animals
;
Colitis, Ulcerative/metabolism*
;
Drugs, Chinese Herbal/chemistry*
;
Rats, Sprague-Dawley
;
Male
;
Rats
;
Gastrointestinal Microbiome/genetics*
;
Chromatography, High Pressure Liquid
;
Humans
;
Mass Spectrometry
;
RNA, Ribosomal, 16S/genetics*
;
Bacteria/drug effects*
10.UPLC-Q-TOF-MS combined with network pharmacology reveals effect and mechanism of Gentianella turkestanorum total extract in ameliorating non-alcoholic steatohepatitis.
Wu DAI ; Dong-Xuan ZHENG ; Ruo-Yu GENG ; Li-Mei WEN ; Bo-Wei JU ; Qiang HOU ; Ya-Li GUO ; Xiang GAO ; Jun-Ping HU ; Jian-Hua YANG
China Journal of Chinese Materia Medica 2025;50(7):1938-1948
This study aims to reveal the effect and mechanism of Gentianella turkestanorum total extract(GTI) in ameliorating non-alcoholic steatohepatitis(NASH). UPLC-Q-TOF-MS was employed to identify the chemical components in GTI. SwissTarget-Prediction, GeneCards, OMIM, and TTD were utilized to screen the targets of GTI components and NASH. The common targets shared by GTI components and NASH were filtered through the STRING database and Cytoscape 3.9.0 to identify core targets, followed by GO and KEGG enrichment analysis. AutoDock was used for molecular docking of key components with core targets. A mouse model of NASH was established with a methionine-choline-deficient high-fat diet. A 4-week drug intervention was conducted, during which mouse weight was monitored, and the liver-to-brain ratio was measured at the end. Hematoxylin-eosin staining, Sirius red staining, and oil red O staining were employed to observe the pathological changes in the liver tissue. The levels of various biomarkers, including aspartate aminotransferase(AST), alanine aminotransferase(ALT), hydroxyproline(HYP), total cholesterol(TC), triglycerides(TG), low-density lipoprotein cholesterol(LDL-C), high-density lipoprotein cholesterol(HDL-C), malondialdehyde(MDA), superoxide dismutase(SOD), and glutathione(GSH), in the serum and liver tissue were determined. RT-qPCR was conducted to measure the mRNA levels of interleukin 1β(IL-1β), interleukin 6(IL-6), tumor necrosis factor α(TNF-α), collagen type I α1 chain(COL1A1), and α-smooth muscle actin(α-SMA). Western blotting was conducted to determine the protein levels of IL-1β, IL-6, TNF-α, and potential drug targets identified through network pharmacology. UPLC-Q-TOF/MS identified 581 chemical components of GTI, and 534 targets of GTI and 1 157 targets of NASH were screened out. The topological analysis of the common targets shared by GTI and NASH identified core targets such as IL-1β, IL-6, protein kinase B(AKT), TNF, and peroxisome proliferator activated receptor gamma(PPARG). GO and KEGG analyses indicated that the ameliorating effect of GTI on NASH was related to inflammatory responses and the phosphoinositide 3-kinase(PI3K)/AKT pathway. The staining results demonstrated that GTI ameliorated hepatocyte vacuolation, swelling, ballooning, and lipid accumulation in NASH mice. Compared with the model group, high doses of GTI reduced the AST, ALT, HYP, TC, and TG levels(P<0.01) while increasing the HDL-C, SOD, and GSH levels(P<0.01). RT-qPCR results showed that GTI down-regulated the mRNA levels of IL-1β, IL-6, TNF-α, COL1A1, and α-SMA(P<0.01). Western blot results indicated that GTI down-regulated the protein levels of IL-1β, IL-6, TNF-α, phosphorylated PI3K(p-PI3K), phosphorylated AKT(p-AKT), phosphorylated inhibitor of nuclear factor kappa B alpha(p-IκBα), and nuclear factor kappa B(NF-κB)(P<0.01). In summary, GTI ameliorates inflammation, dyslipidemia, and oxidative stress associated with NASH by regulating the PI3K/AKT/NF-κB signaling pathway.
Animals
;
Non-alcoholic Fatty Liver Disease/genetics*
;
Mice
;
Network Pharmacology
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Chromatography, High Pressure Liquid
;
Liver/metabolism*
;
Mice, Inbred C57BL
;
Humans
;
Mass Spectrometry
;
Tumor Necrosis Factor-alpha/metabolism*
;
Disease Models, Animal
;
Molecular Docking Simulation

Result Analysis
Print
Save
E-mail