1.Proteomics reveals biomarkers for sepsis-associated acute kidney injury: a prospective multicenter cohort study.
Weimin ZHU ; Nanjin CHEN ; Hanzhi DAI ; Cuicui DONG ; Yubin XU ; Qi CHEN ; Fangyu YU ; Cheng ZHENG ; Chao ZHANG ; Sheng ZHANG ; Yinghe XU ; Yongpo JIANG
Chinese Critical Care Medicine 2025;37(8):707-714
OBJECTIVE:
To identify and validate novel biomarkers for the early diagnosis of sepsis-associated acute kidney injury (SA-AKI) and precise continuous renal replacement therapy (CRRT) using proteomics.
METHODS:
A prospective multicenter cohort study was conducted. Patients with sepsis admitted to five hospitals in Taizhou City of Zhejiang Province from April 2019 to December 2021 were continuously enrolled, based on the occurrence of acute kidney injury (AKI). Sepsis patients were divided into SA-AKI group and non-SA-AKI group, and healthy individuals who underwent physical examinations during the same period were used as control (NC group). Peripheral blood samples from participants were collected for protein mass spectrometry analysis. Differentially expressed proteins were identified, and functional enrichment analysis was conducted on these proteins. The levels of target proteins were detected by enzyme linked immunosorbent assay (ELISA), and the predictive value of target protein for SA-AKI were evaluated by receiver operator characteristic curve (ROC curve). Additionally, sepsis patients and healthy individuals were selected from one hospital to externally verify the expression level of the target protein and its predictive value for SA-AKI, as well as the accuracy of CRRT treatment.
RESULTS:
A total of 37 patients with sepsis (including 19 with AKI and 18 without AKI) and 31 healthy individuals were enrolled for proteomic analysis. Seven proteins were identified with significantly differential expression between the SA-AKI group and non-SA-AKI group: namely cystatin C (CST3), β 2-microglobulin (β 2M), insulin-like growth factor-binding protein 4 (IGFBP4), complement factor I (CFI), complement factor D (CFD), CD59, and glycoprotein prostaglandin D2 synthase (PTGDS). Functional enrichment analysis revealed that these proteins were involved in immune response, complement activation, coagulation cascade, and neutrophil degranulation. ELISA results demonstrated specific expression of each target protein in the SA-AKI group. Additionally, 65 patients with sepsis (38 with AKI and 27 without AKI) and 20 healthy individuals were selected for external validation of the 7 target proteins. ELISA results showed that there were statistically significant differences in the expression levels of CST3, β 2M, IGFBP4, CFD, and CD59 between the SA-AKI group and non-SA-AKI group. ROC curve analysis indicated that the area under the curve (AUC) values of CST3, β 2M, IGFBP4, CFD, and CD59 for predicting SA-AKI were 0.788, 0.723, 0.723, 0.795, and 0.836, respectively, all exceeding 0.7. Further analysis of patients who underwent CRRT or not revealed that IGFBP4 had a good predictive value, with an AUC of 0.84.
CONCLUSIONS
Based on proteomic analysis, CST3, β 2M, IGFBP4, CFD, and CD59 may serve as potential biomarkers for the diagnosis of SA-AKI, among which IGFBP4 might be a potential biomarker for predicting the need for CRRT in SA-AKI patients. However, further clinical validation is required.
Humans
;
Sepsis/complications*
;
Acute Kidney Injury/blood*
;
Proteomics
;
Prospective Studies
;
Biomarkers/blood*
;
Male
;
Female
;
beta 2-Microglobulin/blood*
;
Middle Aged
;
Cystatin C/blood*
;
Aged
2.Progress on Neoadjuvant Immunotherapy for Resectable Non-small Cell Lung Cancer
QI CHANG ; TIAN PANWEN ; LI WEIMIN
Chinese Journal of Lung Cancer 2024;27(2):138-146
In recent years,there has been a consensus regarding the enhancement of prognosis in patients with ad-vanced non-small cell lung cancer(NSCLC)through the utilization of immune checkpoint inhibitors(ICIs).Numerous clini-cal studies have also demonstrated the substantial value of immunotherapy for resectable NSCLC patients.Nevertheless,there remain controversies surrounding the exploration of immune combination strategies,treatment-related side effects,prognostic biomarkers,as well as other issues in the neoadjuvant therapy setting.Consequently,this article presents a comprehensive overview of the recent advancements in neoadjuvant immunotherapy for resectable NSCLC,stimulating fresh perspectives and delving into its merits and challenges in clinical application.
3.Construction of Knowledge Service and Clinical Application System of"Prevention of Disease"in Traditional Chinese Medicine Based on Big Data Convergence
Xiuying KUANG ; Qi YU ; Jinghua LI ; Guoxiang LI ; Xianhong LI ; Weimin ZHAO ; Fan YAO
World Science and Technology-Modernization of Traditional Chinese Medicine 2024;26(1):236-241
Objective To explore the construction idea and application method of knowledge base and knowledge mining system for the prevention and treatment of diseases in traditional Chinese medicine.Methods Guided by the theory of traditional Chinese medicine(TCM),firstly,the knowledge system of TCM Prevention and treatment was sorted out,and the structure and relationship of TCM Prevention and treatment knowledge base were designed according to the classification method of TCM Prevention and treatment;Secondly,according to the needs of pre treatment research,the ancient and modern literature data sources and knowledge collection methods of TCM pre treatment database are proposed;Then,under the framework of the pre treatment classification system,the core knowledge is studied in the aspects of professional annotation,relationship extraction,knowledge audit,and a variety of data mining algorithms are introduced to analyze and mine the knowledge;Finally,the massive data obtained are combined with big data analysis and computer machine learning to realize intelligent information collection,disease analysis and diagnosis and treatment suggestions.Results Under the guidance of traditional Chinese medicine theory,the knowledge base of traditional Chinese medicine for prevention and treatment of diseases can digitize,digitize and intellectualize the basic knowledge and clinical knowledge of traditional Chinese medicine for prevention and treatment of diseases,and can objectively mine and analyze the data,providing a basis for the service and sharing of knowledge of traditional Chinese medicine for prevention and treatment of diseases.Conclusion The knowledge base of TCM Prevention and treatment is an important way for the digital storage of TCM Prevention and treatment knowledge,and provides literature knowledge support and objective evidence of data mining for TCM Prevention and treatment research.
4.Magnesium promotes vascularization and osseointegration in diabetic states.
Linfeng LIU ; Feiyu WANG ; Wei SONG ; Danting ZHANG ; Weimin LIN ; Qi YIN ; Qian WANG ; Hanwen LI ; Quan YUAN ; Shiwen ZHANG
International Journal of Oral Science 2024;16(1):10-10
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues. Magnesium has been proved to promote bone healing under normal conditions. Here, we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status. We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised, with significantly decreased angiogenesis. We then developed Mg-coating implants with hydrothermal synthesis. These implants successfully improved the vascularization and osseointegration in diabetic status. Mechanically, Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1 (Keap1) and the nucleation of nuclear factor erythroid 2-related factor 2 (Nrf2) by up-regulating the expression of sestrin 2 (SESN2) in endothelial cells, thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia. Altogether, our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
Mice
;
Animals
;
Kelch-Like ECH-Associated Protein 1/metabolism*
;
Magnesium/metabolism*
;
Osseointegration
;
Diabetes Mellitus, Experimental/metabolism*
;
Endothelial Cells/metabolism*
;
NF-E2-Related Factor 2/metabolism*
5.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
6.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
7.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
8.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
9.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.
10.Magnesium promotes vascularization and osseointegration in diabetic states
Liu LINFENG ; Wang FEIYU ; Song WEI ; Zhang DANTING ; Lin WEIMIN ; Yin QI ; Wang QIAN ; Li HANWEN ; Yuan QUAN ; Zhang SHIWEN
International Journal of Oral Science 2024;16(1):122-133
Diabetes has long been considered a risk factor in implant therapy and impaired wound healing in soft and hard oral tissues.Magnesium has been proved to promote bone healing under normal conditions.Here,we elucidate the mechanism by which Mg2+ promotes angiogenesis and osseointegration in diabetic status.We generated a diabetic mice model and demonstrated the alveolar bone healing was compromised,with significantly decreased angiogenesis.We then developed Mg-coating implants with hydrothermal synthesis.These implants successfully improved the vascularization and osseointegration in diabetic status.Mechanically,Mg2+ promoted the degradation of Kelch-like ECH-associated protein 1(Keap1)and the nucleation of nuclear factor erythroid 2-related factor 2(Nrf2)by up-regulating the expression of sestrin 2(SESN2)in endothelial cells,thus reducing the elevated levels of oxidative stress in mitochondria and relieving endothelial cell dysfunction under hyperglycemia.Altogether,our data suggested that Mg2+ promoted angiogenesis and osseointegration in diabetic mice by regulating endothelial mitochondrial metabolism.

Result Analysis
Print
Save
E-mail