1.Effects of repetitive transcranial magnetic stimulation on neuronal excitability and ion channels in hindlimb unloading mice.
Wentao HOU ; Rui FU ; Mingqiang ZHU ; Haijun ZHU ; Chong DING
Journal of Biomedical Engineering 2023;40(1):8-19
Weightlessness in the space environment affects astronauts' learning memory and cognitive function. Repetitive transcranial magnetic stimulation has been shown to be effective in improving cognitive dysfunction. In this study, we investigated the effects of repetitive transcranial magnetic stimulation on neural excitability and ion channels in simulated weightlessness mice from a neurophysiological perspective. Young C57 mice were divided into control, hindlimb unloading and magnetic stimulation groups. The mice in the hindlimb unloading and magnetic stimulation groups were treated with hindlimb unloading for 14 days to establish a simulated weightlessness model, while the mice in the magnetic stimulation group were subjected to 14 days of repetitive transcranial magnetic stimulation. Using isolated brain slice patch clamp experiments, the relevant indexes of action potential and the kinetic property changes of voltage-gated sodium and potassium channels were detected to analyze the excitability of neurons and their ion channel mechanisms. The results showed that the behavioral cognitive ability and neuronal excitability of the mice decreased significantly with hindlimb unloading. Repetitive transcranial magnetic stimulation could significantly improve the cognitive impairment and neuroelectrophysiological indexes of the hindlimb unloading mice. Repetitive transcranial magnetic stimulation may change the activation, inactivation and reactivation process of sodium and potassium ion channels by promoting sodium ion outflow and inhibiting potassium ion, and affect the dynamic characteristics of ion channels, so as to enhance the excitability of single neurons and improve the cognitive damage and spatial memory ability of hindlimb unloading mice.
Animals
;
Mice
;
Transcranial Magnetic Stimulation
;
Hindlimb Suspension
;
Neurons
;
Cognitive Dysfunction
;
Brain
2.Mitochondrial Oxidative Stress Enhances Vasoconstriction by Altering Calcium Homeostasis in Cerebrovascular Smooth Muscle Cells under Simulated Microgravity.
Zi Fan LIU ; Hai Ming WANG ; Min JIANG ; Lin WANG ; Le Jian LIN ; Yun Zhang ZHAO ; Jun Jie SHAO ; Jing Jing ZHOU ; Man Jiang XIE ; Xin LI ; Ran ZHANG
Biomedical and Environmental Sciences 2021;34(3):203-212
Objective:
Exposure to microgravity results in postflight cardiovascular deconditioning in astronauts. Vascular oxidative stress injury and mitochondrial dysfunction have been reported during this process. To elucidate the mechanism for this condition, we investigated whether mitochondrial oxidative stress regulates calcium homeostasis and vasoconstriction in hindlimb unweighted (HU) rat cerebral arteries.
Methods:
Three-week HU was used to simulate microgravity in rats. The contractile responses to vasoconstrictors, mitochondrial fission/fusion, Ca
Results:
An increase of cytoplasmic Ca
Conclusion
The present results suggest that mitochondrial oxidative stress enhances cerebral vasoconstriction by regulating calcium homeostasis during simulated microgravity.
Animals
;
Calcium/metabolism*
;
Cerebral Arteries
;
Homeostasis
;
Male
;
Mitochondria/physiology*
;
Myocytes, Smooth Muscle/physiology*
;
Oxidative Stress
;
Rats
;
Rats, Sprague-Dawley
;
Vasoconstriction/physiology*
;
Weightlessness Simulation
3.Collagen Peptides Improve Lymphocyte Distribution in Peripheral Blood and T Lymphocyte Proliferation in Spleen of Mice under the Condition of Simulated Weightlessness.
Shao-Yan SI ; Bing-Xin XU ; Ying-Ying WU ; Ya-Ya QIN ; Ran DUAN ; Shu-Jun SONG
Journal of Experimental Hematology 2020;28(3):1001-1005
OBJECTIVE:
To investigate whether collagen peptides can improve the immune functions of mice under the condition of simulated weightlessness.
METHODS:
Mouse tail-suspension model was used to simulate the effects of weightlessness. Tail-suspended mice were intraperitoneally injected with 600 mg collagen peptides per kilogram body weight once a day for 10 days. Then, the mice were killed, and white blood cells were counted and classified. Lymphocyte subsets and T lymphocyte proliferations in spleens were analyzed.
RESULTS:
Compared with normal control group, total and differential count of leukocytes, lymphocytes, T cells,CD4 and CD8 T cells, B cells and NK cells, and splenic T lymphocyte proliferation all decreased in the weightlessness simulated mice (P<0.05). Except for NK cells, the above-mentioned parameters were increased after administration of collagen peptides, and some of the parameters were recovered to the levels of normal control mice (P<0.05).
CONCLUSION
Collagen peptides can effectively improve peripheral blood lymphocyte distributions and T lymphocyte proliferations of mice under the condition of simulated weightlessness. This study nay provid the experimental basis for improvement of immune functions of astronauts.
Animals
;
CD8-Positive T-Lymphocytes
;
Cell Proliferation
;
Collagen
;
Lymphocyte Count
;
Mice
;
Peptides
;
Spleen
;
Weightlessness
;
Weightlessness Simulation
4.A modified protocol for generating the simulated weightlessness rat model.
Zi Hao FU ; Zhen WANG ; Jie WU ; Hong Yan YANG ; Xing ZHANG ; Feng GAO ; Jia LI
Chinese Journal of Applied Physiology 2019;35(2):189-192
OBJECTIVE:
To introduce a modified protocol for generating the simulated weightlessness rat model by hindlimb unloading.
METHODS:
Ninety male adult SD rats were randomly divided into three groups: the control group, classical suspension group and modified suspension group (n=30/group). In the classical suspension group, a strip of medical adhesive tape was attached to the tail, with horizontal filament tape wrapping. A piece of gauze was wrapped around the tail at the outermost layer and the tail was suspended for hindlimb unloading. In the modified suspension group, a layer of plastic net was added between the horizontal filament tape and the gauze to reduce the squeeze on the tail as a buffer zone and ensure proper circulation of the tail. After 4 weeks of suspension, damage to the tail and sheath detachment were observed. Meanwhile the body weight and right soleus wet weight of rats were measured.
RESULTS:
The ratio of right soleus wet weight to body weight was decreased significantly in both the classical suspension group and the modified suspension group compared with the control group, while there was no difference in body weight among the three different groups. Importantly, the incidence of tail ischemia and necrosis (13.3% vs 40.0% in the classical suspension group) and the incidence of sheath detachment from tail (3.3% vs 26.7% in the classical suspension group) were significantly lower whereas the success rates of model (33.3% vs 83.3% in classical suspension group) was significantly higher in the modified suspension group.
CONCLUSION
The modified protocol decreases the incidence of tail necrosis and sheath detachment in the rat tail suspension and increases the success rate of the hindlimb unloading rat model, with improved simplicity and practicability.
Animals
;
Hindlimb Suspension
;
Male
;
Muscle, Skeletal
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
Weightlessness Simulation
;
methods
5.Physiological effects of weightlessness: countermeasure system development for a long-term Chinese manned spaceflight.
Linjie WANG ; Zhili LI ; Cheng TAN ; Shujuan LIU ; Jianfeng ZHANG ; Siyang HE ; Peng ZOU ; Weibo LIU ; Yinghui LI
Frontiers of Medicine 2019;13(2):202-212
The Chinese space station will be built around 2020. As a national space laboratory, it will offer unique opportunities for studying the physiological effects of weightlessness and the efficacy of the countermeasures against such effects. In this paper, we described the development of countermeasure systems in the Chinese space program. To emphasize the need of the Chinese space program to implement its own program for developing countermeasures, we reviewed the literature on the negative physiological effects of weightlessness, the challenges of completing missions, the development of countermeasure devices, the establishment of countermeasure programs, and the efficacy of the countermeasure techniques in American and Russian manned spaceflights. In addition, a brief overview was provided on the Chinese research and development on countermeasures to discuss the current status and goals of the development of countermeasures against physiological problems associated with weightlessness.
China
;
Humans
;
Program Evaluation
;
Space Flight
;
Weightlessness
;
Weightlessness Simulation
6.The Impacts of Simulated Microgravity on Rat Brain Depended on Durations and Regions.
Bo CHEN ; Yu Shi ZHANG ; George LI ; Jun-Lae CHO ; Yu Lin DENG ; Yu Juan LI
Biomedical and Environmental Sciences 2019;32(7):496-507
OBJECTIVE:
To explore the dynamic impacts of simulated microgravity (SM) on different vital brain regions of rats.
METHODS:
Microgravity was simulated for 7 and 21 days, respectively, using the tail-suspension rat model. Histomorphology, oxidative stress, inflammatory cytokines and the expression of some key proteins were determined in hippocampus, cerebral cortex and striatum.
RESULTS:
21-day SM decreased brain derived neurotrophic factor and induced neuron atrophy in the cerebral cortex. Strong oxidative stress was triggered at day 7 and the oxidative status returned to physiological level at day 21. Inflammatory cytokines were gradually suppressed and in striatum, the suppression was regulated partially through c-Jun/c-Fos.
CONCLUSION
The results revealed that the significant impacts of SM on rat brain tissue depended on durations and regions, which might help to understand the health risk and to prevent brain damage for astronauts in space travel.
Animals
;
Brain
;
metabolism
;
pathology
;
Brain-Derived Neurotrophic Factor
;
metabolism
;
Cytokines
;
metabolism
;
Male
;
Oxidative Stress
;
Proto-Oncogene Proteins c-fos
;
metabolism
;
Proto-Oncogene Proteins c-jun
;
metabolism
;
Random Allocation
;
Rats
;
Weightlessness Simulation
7.Research of simulated microgravity regulate MC3T3-E1 cells differentiation through the nuclear factor-kappa B signaling pathway.
Biao HAN ; Yang ZHANG ; Hao LI ; Shuping WEI ; Ruixin LI ; Xizheng ZHANG
Journal of Biomedical Engineering 2019;36(3):421-427
In this study, we aim to investigat the effect of microgravity on osteoblast differentiation in osteoblast-like cells (MC3T3-E1). In addition, we explored the response mechanism of nuclear factor-kappa B (NF-κB) signaling pathway to "zero- " in MC3T3-E1 cells under the simulated microgravity conditions. MC3T3-E1 were cultured in conventional (CON) and simulated microgravity (SMG), respectively. Then, the expression of the related osteoblastic genes and the specific molecules in NF-κB signaling pathway were measured. The results showed that the mRNA and protein levels of alkaline phosphatase (ALP), osteocalcin (OCN) and type Ⅰ collagen (CoL-Ⅰ) were dramatically decreased under the simulated microgravity. Meanwhile, the NF-κB inhibitor α (IκB-α) protein level was decreased and the expressions of phosphorylation of IκB-α (p-IκB-α), p65 and phosphorylation of p65 (p-p65) were significantly up-regulated in SMG group. In addition, the IL-6 content in SMG group was increased compared to CON. These results indicated that simulated microgravity could activate the NF-κB pathway to regulate MC3T3-E1 cells differentiation.
3T3 Cells
;
Animals
;
Cell Differentiation
;
Mice
;
NF-kappa B
;
physiology
;
Osteoblasts
;
Signal Transduction
;
Weightlessness Simulation
8.Exploratory, cognitive, and depressive-like behaviors in adult and pediatric mice exposed to controlled cortical impact
Suk Woo LEE ; Mun Sun JANG ; Seong Hae JEONG ; Hoon KIM
Clinical and Experimental Emergency Medicine 2019;6(2):125-137
OBJECTIVE: Sequelae of behavioral impairments associated with human traumatic brain injury (TBI) include neurobehavioral problems. We compared exploratory, cognitive, and depressive-like behaviors in pediatric and adult male mice exposed to controlled cortical impact (CCI).METHODS: Pediatric (21 to 25 days old) and adult (8 to 12 weeks old) male C57Bl/6 mice underwent CCI at a 2-mm depth of deflection. Hematoxylin and eosin staining was performed 3 to 7 days after recovery from CCI, and injury volume was analyzed using ImageJ. Neurobehavioral characterization after CCI was performed using the Barnes maze test (BMT), passive avoidance test, open-field test, light/dark test, tail suspension test, and rotarod test. Acutely and subacutely (3 and 7 days after CCI, respectively), CCI mice showed graded injury compared to sham mice for all analyzed deflection depths.RESULTS: Time-dependent differences in injury volume were noted between 3 and 7 days following 2-mm TBI in adult mice. In the BMT, 2-mm TBI adults showed spatial memory deficits compared to sham adults (P < 0.05). However, no difference in spatial learning and memory was found between sham and 2-mm CCI groups among pediatric mice. The open-field test, light/dark test, and tail suspension test did not reveal differences in anxiety-like behaviors in both age groups.CONCLUSION: Our findings revealed a graded injury response in both age groups. The BMT was an efficient cognitive test for assessing spatial/non-spatial learning following CCI in adult mice; however, spatial learning impairments in pediatric mice could not be assessed.
Adult
;
Animals
;
Brain Injuries
;
Eosine Yellowish-(YS)
;
Hematoxylin
;
Hindlimb Suspension
;
Humans
;
Learning
;
Male
;
Memory
;
Mice
;
Rotarod Performance Test
;
Spatial Learning
;
Spatial Memory
9.Bone Loss Induced by Simulated Microgravity, Ionizing Radiation and/or Ultradian Rhythms in the Hindlimbs of Rats.
Ya Nan ZHANG ; Wen Gui SHI ; He LI ; Jun Rui HUA ; Xiu FENG ; Wen Jun WEI ; Ju Fang WANG ; Jin Peng HE ; Su Wen LEI
Biomedical and Environmental Sciences 2018;31(2):126-135
OBJECTIVE:
To better understand the pathological causes of bone loss in a space environment, including microgravity, ionizing radiation, and ultradian rhythms.
METHODS:
Sprague Dawley (SD) rats were randomly divided into a baseline group, a control group, a hindlimb suspension group, a radiation group, a ultradian rhythms group and a combined-three-factor group. After four weeks of hindlimb suspension followed by X-ray exposure and/or ultradian rhythms, biomechanical properties, bone mineral density, histological analysis, microstructure parameters, and bone turnover markers were detected to evaluate bone loss in hindlimbs of rats.
RESULTS:
Simulated microgravity or combined-three factors treatment led to a significant decrease in the biomechanical properties of bones, reduction in bone mineral density, and deterioration of trabecular parameters. Ionizing radiation exposure also showed adverse impact while ultradian rhythms had no significant effect on these outcomes. Decrease in the concentration of the turnover markers bone alkaline phosphatase (bALP), osteocalcin (OCN), and tartrate-resistant acid phosphatase-5b (TRAP-5b) in serum was in line with the changes in trabecular parameters.
CONCLUSION
Simulated microgravity is the main contributor of bone loss. Radiation also results in deleterious effects but ultradian rhythms has no significant effect. Combined-three factors treatment do not exacerbate bone loss when compared to simulated microgravity treatment alone.
Animals
;
Biomechanical Phenomena
;
Bone Density
;
physiology
;
Bone Resorption
;
etiology
;
metabolism
;
Femur
;
metabolism
;
Hindlimb Suspension
;
Rats, Sprague-Dawley
;
Tibia
;
metabolism
;
Ultradian Rhythm
;
Weightlessness Simulation
;
adverse effects
;
X-Rays
;
adverse effects
10.Proteomic Analysis of the Hippocampus in Mouse Models of Trigeminal Neuralgia and Inescapable Shock-Induced Depression.
Qing-Huan GUO ; Qing-He TONG ; Ning LU ; Hong CAO ; Liu YANG ; Yu-Qiu ZHANG
Neuroscience Bulletin 2018;34(1):74-84
To investigate the behavioral and biomolecular similarity between neuralgia and depression, a trigeminal neuralgia (TN) mouse model was established by constriction of the infraorbital nerve (CION) to mimic clinical trigeminal neuropathic pain. A mouse learned helplessness (LH) model was developed to investigate inescapable foot-shock-induced psychiatric disorders like depression in humans. Mass spectrometry was used to assess changes in the biomolecules and signaling pathways in the hippocampus from TN or LH mice. TN mice developed not only significant mechanical allodynia but also depressive-like behaviors (mainly behavioral despair) at 2 weeks after CION, similar to LH mice. MS analysis demonstrated common and distinctive protein changes in the hippocampus between groups. Many protein function families (such as cell-to-cell signaling and interaction, and cell assembly and organization,) and signaling pathways (e.g., the Huntington's disease pathway) were involved in chronic neuralgia and depression. Together, these results demonstrated that the LH and TN models both develop depressive-like behaviors, and revealed the involvement of many psychiatric disorder-related biomolecules/pathways in the pathogenesis of TN and LH.
Animals
;
Avoidance Learning
;
physiology
;
Brain-Derived Neurotrophic Factor
;
metabolism
;
Depression
;
etiology
;
pathology
;
Disease Models, Animal
;
Electroshock
;
adverse effects
;
Functional Laterality
;
Helplessness, Learned
;
Hindlimb Suspension
;
psychology
;
Hippocampus
;
metabolism
;
Male
;
Mass Spectrometry
;
Mice
;
Mice, Inbred C57BL
;
Orbit
;
innervation
;
Pain Measurement
;
Proteomics
;
methods
;
Reaction Time
;
physiology
;
Signal Transduction
;
physiology
;
Trigeminal Neuralgia
;
etiology
;
pathology

Result Analysis
Print
Save
E-mail