1.Pathogenesis and treatment progress of flap ischemia-reperfusion injury
Bo HE ; Wen CHEN ; Suilu MA ; Zhijun HE ; Yuan SONG ; Jinpeng LI ; Tao LIU ; Xiaotao WEI ; Weiwei WANG ; Jing XIE
Chinese Journal of Tissue Engineering Research 2025;29(6):1230-1238
BACKGROUND:Flap transplantation technique is a commonly used surgical procedure for the treatment of severe tissue defects,but postoperative flap necrosis is easily triggered by ischemia-reperfusion injury.Therefore,it is still an important research topic to improve the survival rate of transplanted flaps. OBJECTIVE:To review the pathogenesis and latest treatment progress of flap ischemia-reperfusion injury. METHODS:CNKI,WanFang Database and PubMed database were searched for relevant literature published from 2014 to 2024.The search terms used were"flap,ischemia-reperfusion injury,inflammatory response,oxidative stress,Ca2+overload,apoptosis,mesenchymal stem cells,platelet-rich plasma,signaling pathways,shock wave,pretreatment"in Chinese and English.After elimination of irrelevant literature,poor quality and obsolete literature,77 documents were finally included for review. RESULTS AND CONCLUSION:Flap ischemia/reperfusion injury may be related to pathological factors such as inflammatory response,oxidative stress response,Ca2+overload,and apoptosis,which can cause apoptosis of vascular endothelial cells,vascular damage and microcirculation disorders in the flap,and eventually lead to flap necrosis.Studies have found that mesenchymal stem cell transplantation,platelet-rich plasma,signaling pathway modulators,shock waves,and pretreatment can alleviate flap ischemia/reperfusion injuries from different aspects and to varying degrees,and reduce the necrosis rate and necrosis area of the grafted flap.Although there are many therapeutic methods for skin flap ischemia/reperfusion injury,a unified and effective therapeutic method has not yet been developed in the clinic,and the advantages and disadvantages of various therapeutic methods have not yet been compared.Most of the studies remain in the stage of animal experiments,rarely involving clinical observations.Therefore,a lot of research is required in the future to gradually move from animal experiments to the clinic in order to better serve the clinic.
2.Clinical Efficacy of Zhuyuwan in Treatment of Hyperlipidemia with Syndrome of Phlegm Turbidity and Obstruction
Lele YANG ; Danmei LUO ; Jiao CHEN ; Xiaobo ZHANG ; Wei SONG ; Wenyu ZHU ; Xin ZHOU ; Xueping LI ; Tao SHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):29-37
ObjectiveTo observe the clinical efficacy and safety of Zhuyuwan in the treatment of hyperlipidemia. MethodsIn this study, hyperlipidemia patients treated in the Hospital of Chengdu University of Traditional Chinese Medicine (TCM) from September 2022 to December 2023 were randomly assigned into a control group and an observation group. Finally, 162 valid cases were included, encompassing 74 cases in the control group and 88 cases in the observation group. The control group was treated with atorvastatin calcium tablets, and the observation group with atorvastatin calcium tablets + Zhuyuwan extract granules. Both groups were treated for 8 weeks. The efficacy in terms of blood lipid level recovery, blood lipid levels, TCM syndrome distribution, efficacy in terms of TCM syndrome, and TCM symptom scores were compared between the two groups as well as between before and after treatment. Liver and kidney functions were monitored for safety assessment. ResultsIn terms of blood lipid level recovery, the total response rate in the observation group was 86.36% (76/88) and that in the control group was 86.49% (64/74), with no statistically significant difference between the two groups. After treatment, both groups showed declines in levels of triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) (P<0.05) and elevations in the level of high-density lipoprotein cholesterol (HDL-C) (P<0.05). Moreover, the observation group outperformed the control group in recovering the levels of TG, LDL-C, and HDL-C (P<0.05, P<0.01). In terms of TCM syndrome, hyperlipidemia was mostly caused by phlegm turbidity and obstruction. The total response rate in terms of TCM syndrome in the observation group was 87.30% (55/63), which was higher than that (63.46%, 33/52) in the control group (χ2=9.102, P<0.01). After treatment, the scores of total TCM symptoms, primary symptoms, and secondary symptoms decreased in both groups (P<0.05), and the observation group had lower scores than the control group (P<0.01). The observation group was superior to the control group in alleviating obesity, chest tightness, and low food intake (P<0.05). In terms of safety, the level of aminotransferase was slightly elevated in the control group, and no obvious adverse reaction was observed in the observation group, with no statistical significance in the incidence of adverse reactions. ConclusionZhuyuwan combined with atorvastatin can not only recover blood lipid levels and alleviate TCM symptoms but also reduce the occurrence of adverse reactions.
3.Clinical Efficacy of Zhuyuwan in Treatment of Hyperlipidemia with Syndrome of Phlegm Turbidity and Obstruction
Lele YANG ; Danmei LUO ; Jiao CHEN ; Xiaobo ZHANG ; Wei SONG ; Wenyu ZHU ; Xin ZHOU ; Xueping LI ; Tao SHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):29-37
ObjectiveTo observe the clinical efficacy and safety of Zhuyuwan in the treatment of hyperlipidemia. MethodsIn this study, hyperlipidemia patients treated in the Hospital of Chengdu University of Traditional Chinese Medicine (TCM) from September 2022 to December 2023 were randomly assigned into a control group and an observation group. Finally, 162 valid cases were included, encompassing 74 cases in the control group and 88 cases in the observation group. The control group was treated with atorvastatin calcium tablets, and the observation group with atorvastatin calcium tablets + Zhuyuwan extract granules. Both groups were treated for 8 weeks. The efficacy in terms of blood lipid level recovery, blood lipid levels, TCM syndrome distribution, efficacy in terms of TCM syndrome, and TCM symptom scores were compared between the two groups as well as between before and after treatment. Liver and kidney functions were monitored for safety assessment. ResultsIn terms of blood lipid level recovery, the total response rate in the observation group was 86.36% (76/88) and that in the control group was 86.49% (64/74), with no statistically significant difference between the two groups. After treatment, both groups showed declines in levels of triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) (P<0.05) and elevations in the level of high-density lipoprotein cholesterol (HDL-C) (P<0.05). Moreover, the observation group outperformed the control group in recovering the levels of TG, LDL-C, and HDL-C (P<0.05, P<0.01). In terms of TCM syndrome, hyperlipidemia was mostly caused by phlegm turbidity and obstruction. The total response rate in terms of TCM syndrome in the observation group was 87.30% (55/63), which was higher than that (63.46%, 33/52) in the control group (χ2=9.102, P<0.01). After treatment, the scores of total TCM symptoms, primary symptoms, and secondary symptoms decreased in both groups (P<0.05), and the observation group had lower scores than the control group (P<0.01). The observation group was superior to the control group in alleviating obesity, chest tightness, and low food intake (P<0.05). In terms of safety, the level of aminotransferase was slightly elevated in the control group, and no obvious adverse reaction was observed in the observation group, with no statistical significance in the incidence of adverse reactions. ConclusionZhuyuwan combined with atorvastatin can not only recover blood lipid levels and alleviate TCM symptoms but also reduce the occurrence of adverse reactions.
4.Impact of Onset-to-Door Time on Endovascular Therapy for Basilar Artery Occlusion
Tianlong LIU ; Chunrong TAO ; Zhongjun CHEN ; Lihua XU ; Yuyou ZHU ; Rui LI ; Jun SUN ; Li WANG ; Chao ZHANG ; Jianlong SONG ; Xiaozhong JING ; Adnan I. QURESHI ; Mohamad ABDALKADER ; Thanh N. NGUYEN ; Raul G. NOGUEIRA ; Jeffrey L. SAVER ; Wei HU
Journal of Stroke 2025;27(1):140-143
5.Panax notoginseng saponins regulate differential miRNA expression in osteoclast exosomes and inhibit ferroptosis in osteoblasts
Hongcheng TAO ; Ping ZENG ; Jinfu LIU ; Zhao TIAN ; Qiang DING ; Chaohui LI ; Jianjie WEI ; Hao LI
Chinese Journal of Tissue Engineering Research 2025;29(19):4011-4021
BACKGROUND:Steroid-induced femoral head necrosis is mostly caused by long-term and extensive use of hormones,but its specific pathogenesis is not yet clear and needs further study. OBJECTIVE:To screen out the differential miRNAs in osteoclast exosomes after the intervention of Panax notoginseng saponins,and on this basis,to further construct an osteogenic-related ferroptosis regulatory network to explore the potential mechanism and research direction of steroid-induced osteonecrosis of the femoral head. METHODS:MTT assay was used to detect the toxic effects of different concentrations of dexamethasone and different mass concentrations of Panax notoginseng saponins on Raw264.7 cell line.Tartrate resistant acid phosphatase staining and TUNEL assay were used to detect the effects of Panax notoginseng saponins on osteoclast inhibition and apoptosis.Exosomes were extracted from cultured osteoclasts with Panax notoginseng saponins intervention.Exosomes from different groups were sequenced to identify differentially expressed miRNAs.CytoScape 3.9.1 was used to construct and visualize the regulatory network between differentially expressed miRNAs and mRNAs.Candidate mRNAs were screened by GO analysis and KEGG analysis.Finally,the differential genes related to ferroptosis were screened out,and the regulatory network of ferroptosis-related genes was constructed. RESULTS AND CONCLUSION:(1)The concentration of dexamethasone(0.1 μmol/L)and Panax notoginseng saponins(1 736.85 μg/mL)suitable for intervention of Raw264.7 cells was determined by MTT assay.(2)Panax notoginseng saponins had an inhibitory effect on osteoclasts and could promote their apoptosis.(3)Totally 20 differentially expressed miRNAs were identified from osteoclast-derived exosome samples,and 11 differentially expressed miRNAs related to osteogenesis were predicted by target mRNAs.The regulatory networks of 4 up-regulated differentially expressed miRNAs corresponding to 155 down-regulated candidate mRNAs and 7 down-regulated differentially expressed miRNAs corresponding to 238 up-regulated candidate mRNAs were constructed.(4)Twenty-four genes related to ferroptosis were screened out from the differential genes.Finally,12 networks were constructed(miR-98-5p/PTGS2,miR-23b-3p/PTGS2,miR-425-5p/TFRC,miR-133a-3p/TFRC,miR-185-5p/TFRC,miR-23b-3p/NFE2L2,miR-23b-3p/LAMP2,miR-98-5p/LAMP2,miR-182-5p/LAMP2,miR-182-5p/TLR4,miR-23b-3p/ZFP36,and miR-182-5p/ZFP36).These results indicate that Panax notoginseng saponins may regulate osteoblast ferroptosis by regulating the expression of miRNAs derived from osteoclast exosomes,thus providing a new idea for the study of the mechanism of steroid-induced femoral head necrosis.
6.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
7.GOLM1 promotes cholesterol gallstone formation via ABCG5-mediated cholesterol efflux in metabolic dysfunction-associated steatohepatitis livers
Yi-Tong LI ; Wei-Qing SHAO ; Zhen-Mei CHEN ; Xiao-Chen MA ; Chen-He YI ; Bao-Rui TAO ; Bo ZHANG ; Yue MA ; Guo ZHANG ; Rui ZHANG ; Yan GENG ; Jing LIN ; Jin-Hong CHEN
Clinical and Molecular Hepatology 2025;31(2):409-425
Background/Aims:
Metabolic dysfunction-associated steatohepatitis (MASH) is a significant risk factor for gallstone formation, but mechanisms underlying MASH-related gallstone formation remain unclear. Golgi membrane protein 1 (GOLM1) participates in hepatic cholesterol metabolism and is upregulated in MASH. Here, we aimed to explore the role of GOLM1 in MASH-related gallstone formation.
Methods:
The UK Biobank cohort was used for etiological analysis. GOLM1 knockout (GOLM1-/-) and wild-type (WT) mice were fed with a high-fat diet (HFD). Livers were excised for histology and immunohistochemistry analysis. Gallbladders were collected to calculate incidence of cholesterol gallstones (CGSs). Biles were collected for biliary lipid analysis. HepG2 cells were used to explore underlying mechanisms. Human liver samples were used for clinical validation.
Results:
MASH patients had a greater risk of cholelithiasis. All HFD-fed mice developed MASH, and the incidence of gallstones was 16.7% and 75.0% in GOLM1-/- and WT mice, respectively. GOLM1-/- decreased biliary cholesterol concentration and output. In vivo and in vitro assays confirmed that GOLM1 facilitated cholesterol efflux through upregulating ATP binding cassette transporter subfamily G member 5 (ABCG5). Mechanistically, GOLM1 translocated into nucleus to promote osteopontin (OPN) transcription, thus stimulating ABCG5-mediated cholesterol efflux. Moreover, GOLM1 was upregulated by interleukin-1β (IL-1β) in a dose-dependent manner. Finally, we confirmed that IL-1β, GOLM1, OPN, and ABCG5 were enhanced in livers of MASH patients with CGSs.
Conclusions
In MASH livers, upregulation of GOLM1 by IL-1β increases ABCG5-mediated cholesterol efflux in an OPN-dependent manner, promoting CGS formation. GOLM1 has the potential to be a molecular hub interconnecting MASH and CGSs.
8.Mid- and long-term efficacy of mitral valve plasty versus replacement in the treatment of functional mitral regurgitation: A 10-year single-center outcome
Hanqing LIANG ; Qiaoli WAN ; Tao WEI ; Rui LI ; Zhipeng GUO ; Jian ZHANG ; Zongtao YIN ; Jinsong HAN
Chinese Journal of Clinical Thoracic and Cardiovascular Surgery 2025;32(01):108-113
Objective To compare the mid- and long-term clinical results of mitral valve plasty (MVP) and mitral valve replacement (MVR) in the treatment of functional mitral regurgitation (FMR). Methods Patients with FMR who underwent surgical treatment in the Department of Cardiovascular Surgery of the General Hospital of Northern Theater Command from 2012 to 2021 were collected. The patients who underwent MVP were divided into a MVP group, and those who underwent MVR into a MVR group. The clinical data and mid-term follow-up efficacy of two groups were compared. Results Finally 236 patients were included. There were 100 patients in the MVP group, including 53 males and 47 females, with an average age of (61.80±8.03) years. There were 136 patients in the MVR group, including 72 males and 64 females, with an average age of (61.29±8.97) years. There was no statistical difference in baseline data between the two groups (P>0.05). There was no statistical difference between the two groups in the extracorporeal circulation time, aortic occlusion time, postoperative hospital and ICU stay, intraoperative blood loss, or hospitalization death (P>0.05), but the time of mechanical ventilation in the MVP group was significantly shorter than that in the MVR group (P=0.022). The total follow-up rate was 100.0%, the longest follow-up was 10 years, and the average follow-up time was (3.60±2.55) years. There were statistical differences in the left atrial diameter, left ventricular end-diastolic diameter, left ventricular end-systolic diameter and cardiac function between the two groups compared with those before surgery (P<0.05). The postoperative left ventricular ejection fraction in the MVP group was statistically higher than that before surgery (P=0.002), but there was no statistical difference in the MVR group before and after surgery (P=0.658). The left atrial diameter in the MVP group was reduced compared with the MVR group (P=0.026). The recurrence rate of mitral regurgitation in the MVP group was higher than that in the MVR group, and the difference was statistically significant (10.0% vs. 1.5%, P=0.003). There were 14 deaths in the MVP group and 19 in the MVR group. The cumulative survival rate (P=0.605) and cardiovascular events-free survival rate (P=0.875) were not statistically significant between the two groups by Kaplan-Meier survival analysis. Conclusion The safety, and mid- and long-term clinical efficacy of MVP in the treatment of FMR patients are better than MVR, and the left atrial and left ventricular diameters are statistically reduced, and cardiac function is statistically improved. However, the surgeon needs to be well aware of the indications for the MVP procedure to reduce the rate of mitral regurgitation recurrence.
9.Effect and Mechanism of Wulingsan Decoction in Protecting Blood Brain Barrier and Ameliorating Cerebral Edema after Intracerebral Hemorrhage in Mice
Damei TAO ; Huihong LI ; Xiaoqing ZHENG ; Yunfei DENG ; Wei WEI ; Xiehua XUE
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(4):1-9
ObjectiveTo study the effect of Wulingsan on cerebral edema after intracerebral hemorrhage (ICH) in mice and explore the treatment mechanism. MethodsThe mouse model of ICH was established by injection of collagenase into the caudate nucleus. Mice were randomly assigned into the following groups: sham, ICH, intervention before modeling with low-dose and high-dose (3.69, 11.07 g·kg-1, respectively) Wulingsan, and intervention after modeling with high-dose Wulingsan. The modified neurological severity score (mNSS) was recorded, and the small animal MRI T2 sequential scanning was performed to measure the volume of cerebral hemorrhage after the modeling of ICH in each group. The Y-maze test, open field test, and Morris water maze test were conducted to evaluate the neurological behaviors of mice in each group. Hematoxylin-eosin staining was employed to observe the pathological changes in the brain tissue. Immunohistochemistry was employed to observe the expression of aquaporin 4 (AQP4), neuronal nuclei (NeuN), and glial fibrillary acidic protein (GFAP) in the brain tissue. Western blot was employed to determine the protein levels of AQP4, Claudin-5, and zonula occludens-1 (ZO-1) in the hematoma area. ResultsCompared with the sham group, the ICH group showed increases in the mNSS, the cerebral hemorrhage volume, and the escape latency in the Morris water maze test (P<0.01), decreases in the times of touching the platform and times of entering the quadrant where the platform was located in the Morris water maze test, and reductions in the spontaneous alternation rate in the Y-maze test and the ratio of distance of center travel to total travel distance in the open field test (P<0.01). Moreover, pathological changes such as cell disarrangement, cell space enlargement, and cell swelling were observed in the ICH group. Immunohistochemistry results showed that the ICH group had higher proportions of AQP4- and GFAP-positive cells and lower proportion of NeuN-positive cells than the sham group (P<0.01). Compared with the sham group, the ICH group showed an up-regulated protein level of AQP4 and down-regulated protein levels of Claudin-5 and ZO-1 (P<0.01). Compared with the ICH group, the intervention with Wulingsan decreased the mNSS, the volume of cerebral hemorrhage, and the escape latency in the Morris water maze test (P<0.05, P<0.01), while increasing the times of touching the platform and times of entering the quadrant where the platform was located in the Morris water maze test, the spontaneous alternation rate in the Y-maze test, and the ratio of distance of center travel to total travel distance in the open field test (P<0.05, P<0.01). Furthermore, the intervention with Wulingsan alleviated the pathological changes in the brain tissue after ICH, decreased the proportion of AQP4- and GFAP-positive cells (P<0.01), increased the proportion of NeuN-positive cells (P<0.01), down-regulated the protein level of AQP4 (P<0.01), and up-regulated the protein levels of Claudin-5 and ZO-1 (P<0.01). ConclusionThe intervention with Wulingsan could reduce the neural function score and the cerebral hemorrhage volume, up-regulate the expression of Claudin-5 and ZO-1, and down-regulate the expression of AQP4 to ameliorate the neurological function defect and cerebral edema after ICH, thereby protecting the brain.
10.Rapid Identification of Different Parts of Nardostachys jatamansi Based on HS-SPME-GC-MS and Ultra-fast Gas Phase Electronic Nose
Tao WANG ; Xiaoqin ZHAO ; Yang WEN ; Momeimei QU ; Min LI ; Jing WEI ; Xiaoming BAO ; Ying LI ; Yuan LIU ; Xiao LUO ; Wenbing LI
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(2):182-191
ObjectiveTo establish a model that can quickly identify the aroma components in different parts of Nardostachys jatamansi, so as to provide a quality control basis for the market circulation and clinical use of N. jatamansi. MethodsHeadspace solid-phase microextraction-gas chromatography-mass spectrometry(HS-SPME-GC-MS) combined with Smart aroma database and National Institute of Standards and Technology(NIST) database were used to characterize the aroma components in different parts of N. jatamansi, and the aroma components were quantified according to relative response factor(RRF) and three internal standards, and the markers of aroma differences in different parts of N. jatamansi were identified by orthogonal partial least squares-discriminant analysis(OPLS-DA) and cluster thermal analysis based on variable importance in the projection(VIP) value >1 and P<0.01. The odor data of different parts of N. jatamansi were collected by Heracles Ⅱ Neo ultra-fast gas phase electronic nose, and the correlation between compound types of aroma components collected by the ultra-fast gas phase electronic nose and the detection results of HS-SPME-GC-MS was investigated by drawing odor fingerprints and odor response radargrams. Chromatographic peak information with distinguishing ability≥0.700 and peak area≥200 was selected as sensor data, and the rapid identification model of different parts of N. jatamansi was established by principal component analysis(PCA), discriminant factor alysis(DFA), soft independent modeling of class analogies(SIMCA) and statistical quality control analysis(SQCA). ResultsThe HS-SPME-GC-MS results showed that there were 28 common components in the underground and aboveground parts of N. jatamansi, of which 22 could be quantified and 12 significantly different components were screened out. Among these 12 components, the contents of five components(ethyl isovalerate, 2-pentylfuran, benzyl alcohol, nonanal and glacial acetic acid,) in the aboveground part of N. jatamansi were significantly higher than those in the underground part(P<0.01), the contents of β-ionone, patchouli alcohol, α-caryophyllene, linalyl butyrate, valencene, 1,8-cineole and p-cymene in the underground part of N. jatamansi were significantly higher than those in the aboveground part(P<0.01). Heracles Ⅱ Neo electronic nose results showed that the PCA discrimination index of the underground and aboveground parts of N. jatamansi was 82, and the contribution rates of the principal component factors were 99.94% and 99.89% when 2 and 3 principal components were extracted, respectively. The contribution rate of the discriminant factor 1 of the DFA model constructed on the basis of PCA was 100%, the validation score of the SIMCA model for discrimination of the two parts was 99, and SQCA could clearly distinguish different parts of N. jatamansi. ConclusionHS-SPME-GC-MS can clarify the differential markers of underground and aboveground parts of N. jatamansi. The four analytical models provided by Heracles Ⅱ Neo electronic nose(PCA, DFA, SIMCA and SQCA) can realize the rapid identification of different parts of N. jatamansi. Combining the two results, it is speculated that terpenes and carboxylic acids may be the main factors contributing to the difference in aroma between the underground and aboveground parts of N. jatamansi.

Result Analysis
Print
Save
E-mail