1.Enzyme-directed Immobilization Strategies for Biosensor Applications
Xing-Bao WANG ; Yao-Hong MA ; Yun-Long XUE ; Xiao-Zhen HUANG ; Yue SHAO ; Yi YU ; Bing-Lian WANG ; Qing-Ai LIU ; Li-He ZHANG ; Wei-Li GONG
Progress in Biochemistry and Biophysics 2025;52(2):374-394
Immobilized enzyme-based enzyme electrode biosensors, characterized by high sensitivity and efficiency, strong specificity, and compact size, demonstrate broad application prospects in life science research, disease diagnosis and monitoring, etc. Immobilization of enzyme is a critical step in determining the performance (stability, sensitivity, and reproducibility) of the biosensors. Random immobilization (physical adsorption, covalent cross-linking, etc.) can easily bring about problems, such as decreased enzyme activity and relatively unstable immobilization. Whereas, directional immobilization utilizing amino acid residue mutation, affinity peptide fusion, or nucleotide-specific binding to restrict the orientation of the enzymes provides new possibilities to solve the problems caused by random immobilization. In this paper, the principles, advantages and disadvantages and the application progress of enzyme electrode biosensors of different directional immobilization strategies for enzyme molecular sensing elements by specific amino acids (lysine, histidine, cysteine, unnatural amino acid) with functional groups introduced based on site-specific mutation, affinity peptides (gold binding peptides, carbon binding peptides, carbohydrate binding domains) fused through genetic engineering, and specific binding between nucleotides and target enzymes (proteins) were reviewed, and the application fields, advantages and limitations of various immobilized enzyme interface characterization techniques were discussed, hoping to provide theoretical and technical guidance for the creation of high-performance enzyme sensing elements and the manufacture of enzyme electrode sensors.
2.Effects of Different Durations of Light Exposure on Body Weight and Learning and Memory Abilities of NIH Mice
Nan ZHANG ; Huaiyin LI ; Xiaodi LIAN ; Juanpeng WEI ; Ming GAO
Laboratory Animal and Comparative Medicine 2025;45(1):73-78
Objective This study aims to investigate the effects of varying durations of light exposure on body weight and learning and memory abilities of pubertal NIH mice. Methods Forty pubertal NIH mice, evenly split by gender and with similar initial weights, were subjected to a 12 h light-dark cycle for one week. They were then randomly assigned to groups with daily light exposure durations of 0, 6, 12, 18, and 24 hours, with 8 mice in each group. The experimental period lasted for 7 weeks, with the first 5 weeks as the feeding phase under different light exposure conditions, and the last 2 weeks as the behavioral testing phase. Their body weight was monitored, and learning and memory abilities were assessed using the T-maze, object location test, and eight-arm maze tests. Results During the light exposure period, there were no significant differences in body weight among groups (P>0.05). However, the weight gain of mice in the 24 h group was significantly higher than that of the 0 h group and the 6 h group during the second and third weeks of light exposure (P<0.05). After five weeks of light exposure, in the T-maze test, the latency time of the 0 h light exposure group was significantly longer than that of the 12 h group (P<0.01), and the latency time of the 24 h light exposure group was significantly longer than that of the 12 h group (P<0.05). In the object location test, the mice in 12 h group exhibited a higher discrimination index and spent more time observing the new location compared to the other groups, with significant differences in comparison to the 18 h group (P<0.01) and the 24 h group (P<0.05). In the eight-arm maze test, the time to find food, the reference memory error rate, and the working memory error rate in the 12 h group were all lower than those in the 0 h group, with significant differences (P<0.05). Moreover, the working memory error rate in the 24 h group was higher than that in the 12 h group, with significant differences (P<0.05). Conclusion Continuous 24 h light exposure affects body weight gain, while light exposure durations exceeding 18 h or below 6 h per day weaken the learning and memory abilities of NIH mice.
3.Exon Sequencing of HNF1β in Chinese Patients with Early-Onset Diabetes
Siqian GONG ; Hong LIAN ; Yating LI ; Xiaoling CAI ; Wei LIU ; Yingying LUO ; Meng LI ; Si-min ZHANG ; Rui ZHANG ; Lingli ZHOU ; Yu ZHU ; Qian REN ; Xiuying ZHANG ; Jing CHEN ; Jing WU ; Xianghai ZHOU ; Xirui WANG ; Xueyao HAN ; Linong JI
Diabetes & Metabolism Journal 2025;49(2):321-330
Background:
Maturity-onset diabetes of the young (MODY) due to variants of hepatocyte nuclear factor 1-beta (HNF1β) (MODY5) has not been well studied in the Chinese population. This study aimed to estimate its prevalence and evaluate the application of a clinical screening method (Faguer score) in Chinese early-onset diabetes (EOD) patients.
Methods:
Among 679 EOD patients clinically diagnosed with type 2 diabetes mellitus (age at diagnosis ≤40 years), the exons of HNF1β were sequenced. Functional impact of rare variants was evaluated using a dual-luciferase reporter system. Faguer scores ≥8 prompted multiplex ligation-dependent probe amplification (MLPA) for large deletions. Pathogenicity of HNF1β variants was assessed following the American College of Medical Genetics and Genomics (ACMG) guidelines.
Results:
Two rare HNF1β missense mutations (E105K and G454R) were identified by sequencing in five patients, showing functional impact in vitro. Another patient was found to have a whole-gene deletion by MLPA in 22 patients with the Faguer score above 8. Following ACMG guidelines, six patients carrying pathogenic or likely pathogenic variant were diagnosed with MODY5. The estimated prevalence of MODY5 in Chinese EOD patients was approximately 0.9% or higher.
Conclusion
MODY5 is not uncommon in China. The Faguer score is helpful in deciding whether to perform MLPA analysis on patients with negative sequencing results.
4.Exon Sequencing of HNF1β in Chinese Patients with Early-Onset Diabetes
Siqian GONG ; Hong LIAN ; Yating LI ; Xiaoling CAI ; Wei LIU ; Yingying LUO ; Meng LI ; Si-min ZHANG ; Rui ZHANG ; Lingli ZHOU ; Yu ZHU ; Qian REN ; Xiuying ZHANG ; Jing CHEN ; Jing WU ; Xianghai ZHOU ; Xirui WANG ; Xueyao HAN ; Linong JI
Diabetes & Metabolism Journal 2025;49(2):321-330
Background:
Maturity-onset diabetes of the young (MODY) due to variants of hepatocyte nuclear factor 1-beta (HNF1β) (MODY5) has not been well studied in the Chinese population. This study aimed to estimate its prevalence and evaluate the application of a clinical screening method (Faguer score) in Chinese early-onset diabetes (EOD) patients.
Methods:
Among 679 EOD patients clinically diagnosed with type 2 diabetes mellitus (age at diagnosis ≤40 years), the exons of HNF1β were sequenced. Functional impact of rare variants was evaluated using a dual-luciferase reporter system. Faguer scores ≥8 prompted multiplex ligation-dependent probe amplification (MLPA) for large deletions. Pathogenicity of HNF1β variants was assessed following the American College of Medical Genetics and Genomics (ACMG) guidelines.
Results:
Two rare HNF1β missense mutations (E105K and G454R) were identified by sequencing in five patients, showing functional impact in vitro. Another patient was found to have a whole-gene deletion by MLPA in 22 patients with the Faguer score above 8. Following ACMG guidelines, six patients carrying pathogenic or likely pathogenic variant were diagnosed with MODY5. The estimated prevalence of MODY5 in Chinese EOD patients was approximately 0.9% or higher.
Conclusion
MODY5 is not uncommon in China. The Faguer score is helpful in deciding whether to perform MLPA analysis on patients with negative sequencing results.
5.Exon Sequencing of HNF1β in Chinese Patients with Early-Onset Diabetes
Siqian GONG ; Hong LIAN ; Yating LI ; Xiaoling CAI ; Wei LIU ; Yingying LUO ; Meng LI ; Si-min ZHANG ; Rui ZHANG ; Lingli ZHOU ; Yu ZHU ; Qian REN ; Xiuying ZHANG ; Jing CHEN ; Jing WU ; Xianghai ZHOU ; Xirui WANG ; Xueyao HAN ; Linong JI
Diabetes & Metabolism Journal 2025;49(2):321-330
Background:
Maturity-onset diabetes of the young (MODY) due to variants of hepatocyte nuclear factor 1-beta (HNF1β) (MODY5) has not been well studied in the Chinese population. This study aimed to estimate its prevalence and evaluate the application of a clinical screening method (Faguer score) in Chinese early-onset diabetes (EOD) patients.
Methods:
Among 679 EOD patients clinically diagnosed with type 2 diabetes mellitus (age at diagnosis ≤40 years), the exons of HNF1β were sequenced. Functional impact of rare variants was evaluated using a dual-luciferase reporter system. Faguer scores ≥8 prompted multiplex ligation-dependent probe amplification (MLPA) for large deletions. Pathogenicity of HNF1β variants was assessed following the American College of Medical Genetics and Genomics (ACMG) guidelines.
Results:
Two rare HNF1β missense mutations (E105K and G454R) were identified by sequencing in five patients, showing functional impact in vitro. Another patient was found to have a whole-gene deletion by MLPA in 22 patients with the Faguer score above 8. Following ACMG guidelines, six patients carrying pathogenic or likely pathogenic variant were diagnosed with MODY5. The estimated prevalence of MODY5 in Chinese EOD patients was approximately 0.9% or higher.
Conclusion
MODY5 is not uncommon in China. The Faguer score is helpful in deciding whether to perform MLPA analysis on patients with negative sequencing results.
6.Exon Sequencing of HNF1β in Chinese Patients with Early-Onset Diabetes
Siqian GONG ; Hong LIAN ; Yating LI ; Xiaoling CAI ; Wei LIU ; Yingying LUO ; Meng LI ; Si-min ZHANG ; Rui ZHANG ; Lingli ZHOU ; Yu ZHU ; Qian REN ; Xiuying ZHANG ; Jing CHEN ; Jing WU ; Xianghai ZHOU ; Xirui WANG ; Xueyao HAN ; Linong JI
Diabetes & Metabolism Journal 2025;49(2):321-330
Background:
Maturity-onset diabetes of the young (MODY) due to variants of hepatocyte nuclear factor 1-beta (HNF1β) (MODY5) has not been well studied in the Chinese population. This study aimed to estimate its prevalence and evaluate the application of a clinical screening method (Faguer score) in Chinese early-onset diabetes (EOD) patients.
Methods:
Among 679 EOD patients clinically diagnosed with type 2 diabetes mellitus (age at diagnosis ≤40 years), the exons of HNF1β were sequenced. Functional impact of rare variants was evaluated using a dual-luciferase reporter system. Faguer scores ≥8 prompted multiplex ligation-dependent probe amplification (MLPA) for large deletions. Pathogenicity of HNF1β variants was assessed following the American College of Medical Genetics and Genomics (ACMG) guidelines.
Results:
Two rare HNF1β missense mutations (E105K and G454R) were identified by sequencing in five patients, showing functional impact in vitro. Another patient was found to have a whole-gene deletion by MLPA in 22 patients with the Faguer score above 8. Following ACMG guidelines, six patients carrying pathogenic or likely pathogenic variant were diagnosed with MODY5. The estimated prevalence of MODY5 in Chinese EOD patients was approximately 0.9% or higher.
Conclusion
MODY5 is not uncommon in China. The Faguer score is helpful in deciding whether to perform MLPA analysis on patients with negative sequencing results.
7.Research progress in machine learning in processing and quality evaluation of traditional Chinese medicine decoction pieces.
Han-Wen ZHANG ; Yue-E LI ; Jia-Wei YU ; Qiang GUO ; Ming-Xuan LI ; Yu LI ; Xi MEI ; Lin LI ; Lian-Lin SU ; Chun-Qin MAO ; De JI ; Tu-Lin LU
China Journal of Chinese Materia Medica 2025;50(13):3605-3614
Traditional Chinese medicine(TCM) decoction pieces are a core carrier for the inheritance and innovation of TCM, and their quality and safety are critical to public health and the sustainable development of the industry. Conventional quality control models, while having established a well-developed system through long-term practice, still face challenges such as relatively long inspection cycles, insufficient objectivity in characterizing complex traits, and urgent needs for improving the efficiency of integrating multidimensional quality information when confronted with the dual demands of large-scale production and precision quality control. With the rapid development of artificial intelligence, machine learning can deeply analyze multidimensional data of the morphology, spectroscopy, and chemical fingerprints of decoction pieces by constructing high-dimensional feature space analysis models, significantly improving the standardization level and decision-making efficiency of quality evaluation. This article reviews the research progress in the application of machine learning in the processing, production, and rapid quality evaluation of TCM decoction pieces. It further analyzes current challenges in technological implementation and proposes potential solutions, offering theoretical and technical references to advance the digital and intelligent transformation of the industry.
Machine Learning
;
Drugs, Chinese Herbal/standards*
;
Quality Control
;
Medicine, Chinese Traditional/standards*
;
Humans
8.Zedoarondiol Inhibits Neovascularization in Atherosclerotic Plaques of ApoE-/- Mice by Reducing Platelet Exosomes-Derived MiR-let-7a.
Bei-Li XIE ; Bo-Ce SONG ; Ming-Wang LIU ; Wei WEN ; Yu-Xin YAN ; Meng-Jie GAO ; Lu-Lian JIANG ; Zhi-Die JIN ; Lin YANG ; Jian-Gang LIU ; Da-Zhuo SHI ; Fu-Hai ZHAO
Chinese journal of integrative medicine 2025;31(3):228-239
OBJECTIVE:
To investigate the effect of zedoarondiol on neovascularization of atherosclerotic (AS) plaque by exosomes experiment.
METHODS:
ApoE-/- mice were fed with high-fat diet to establish AS model and treated with high- and low-dose (10, 5 mg/kg daily) of zedoarondiol, respectively. After 14 weeks, the expressions of anti-angiogenic protein thrombospondin 1 (THBS-1) and its receptor CD36 in plaques, as well as platelet activation rate and exosome-derived miR-let-7a were detected. Then, zedoarondiol was used to intervene in platelets in vitro, and miR-let-7a was detected in platelet-derived exosomes (Pexo). Finally, human umbilical vein endothelial cells (HUVECs) were transfected with miR-let-7a mimics and treated with Pexo to observe the effect of miR-let-7a in Pexo on tube formation.
RESULTS:
Animal experiments showed that after treating with zedoarondiol, the neovascularization density in plaques of AS mice was significantly reduced, THBS-1 and CD36 increased, the platelet activation rate was markedly reduced, and the miR-let-7a level in Pexo was reduced (P<0.01). In vitro experiments, the platelet activation rate and miR-let-7a levels in Pexo were significantly reduced after zedoarondiol's intervention. Cell experiments showed that after Pexo's intervention, the tube length increased, and the transfection of miR-let-7a minics further increased the tube length of cells, while reducing the expressions of THBS-1 and CD36.
CONCLUSION
Zedoarondiol has the effect of inhibiting neovascularization within plaque in AS mice, and its mechanism may be potentially related to inhibiting platelet activation and reducing the Pexo-derived miRNA-let-7a level.
Animals
;
MicroRNAs/genetics*
;
Exosomes/drug effects*
;
Plaque, Atherosclerotic/genetics*
;
Neovascularization, Pathologic/genetics*
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Humans
;
Blood Platelets/drug effects*
;
Apolipoproteins E/deficiency*
;
Thrombospondin 1/metabolism*
;
CD36 Antigens/metabolism*
;
Platelet Activation/drug effects*
;
Male
;
Mice
;
Mice, Inbred C57BL
9.Vascular Protection of Neferine on Attenuating Angiotensin II-Induced Blood Pressure Elevation by Integrated Network Pharmacology Analysis and RNA-Sequencing Approach.
A-Ling SHEN ; Xiu-Li ZHANG ; Zhi GUO ; Mei-Zhu WU ; Ying CHENG ; Da-Wei LIAN ; Chang-Geng FU ; Jun PENG ; Min YU ; Ke-Ji CHEN
Chinese journal of integrative medicine 2025;31(8):694-706
OBJECTIVE:
To explore the functional roles and underlying mechanisms of neferine in the context of angiotensin II (Ang II)-induced hypertension and vascular dysfunction.
METHODS:
Male mice were infused with Ang II to induce hypertension and randomly divided into treatment groups receiving neferine or a control vehicle based on baseline blood pressure using a random number table method. The hypertensive mouse model was constructed by infusing Ang II via a micro-osmotic pump (500 ng/kg per minute), and neferine (0.1, 1, or 10 mg/kg), valsartan (10 mg/kg), or double distilled water was administered intragastrically once daily for 6 weeks. A non-invasive blood pressure system, ultrasound, and hematoxylin and eosin staining were performed to assess blood pressure and vascular changes. RNA sequencing and network pharmacology were employed to identify differentially expressed transcripts (DETs) and pathways. Vascular ring tension assay was used to test vascular function. A7R5 cells were incubated with neferine for 24 h and then treated with Ang II to record the real-time Ca2+ concentration by confocal microscope. Immunohistochemistry (IHC) and Western blot were used to evaluate vasorelaxation, calcium, and the extracellular signal-regulated kinase (ERK)1/2 pathway.
RESULTS:
Neferine treatment effectively mitigated the elevation in blood pressure, pulse wave velocity, aortic thickening in the abdominal aorta of Ang II-infused mice (P<0.05). RNA sequencing and network pharmacology analysis identified 355 DETs that were significantly reversed by neferine treatment, along with 25 potential target genes, which were further enriched in multiple pathways and biological processes, such as ERK1 and ERK2 cascade regulation, calcium pathway, and vascular smooth muscle contraction. Further investigation revealed that neferine treatment enhanced vasorelaxation and reduced Ca2+-dependent contraction of abdominal aortic rings, independent of endothelium function (P<0.05). The underlying mechanisms were mediated, at least in part, via suppression of receptor-operated channels, store-operated channels, or voltage-operated calcium channels. Neferine pre-treatment demonstrated a reduction in intracellular Ca2+ release in Ang II stimulated A7R5 cells. IHC staining and Western blot confirmed that neferine treatment effectively attenuated the upregulation of p-ERK1/2 both in vivo and in vitro, which was similar with treatment of ERK1/2 inhibitor PD98059 (P<0.05).
CONCLUSIONS
Neferine remarkably alleviates Ang II-induced elevation of blood pressure, vascular dysfunction, and pathological changes in the abdominal aorta. This beneficial effect is mediated by the modulation of multiple pathways, including calcium and ERK1/2 pathways.
Animals
;
Angiotensin II
;
Male
;
Benzylisoquinolines/therapeutic use*
;
Network Pharmacology
;
Blood Pressure/drug effects*
;
Sequence Analysis, RNA
;
Mice
;
Hypertension/chemically induced*
;
Mice, Inbred C57BL
;
Calcium/metabolism*
10.Dimeric natural product panepocyclinol A inhibits STAT3 via di-covalent modification.
Li LI ; Yuezhou WANG ; Yiqiu WANG ; Xiaoyang LI ; Qihong DENG ; Fei GAO ; Wenhua LIAN ; Yunzhan LI ; Fu GUI ; Yanling WEI ; Su-Jie ZHU ; Cai-Hong YUN ; Lei ZHANG ; Zhiyu HU ; Qingyan XU ; Xiaobing WU ; Lanfen CHEN ; Dawang ZHOU ; Jianming ZHANG ; Fei XIA ; Xianming DENG
Acta Pharmaceutica Sinica B 2025;15(1):409-423
Homo- or heterodimeric compounds that affect dimeric protein function through interaction between monomeric moieties and protein subunits can serve as valuable sources of potent and selective drug candidates. Here, we screened an in-house dimeric natural product collection, and panepocyclinol A (PecA) emerged as a selective and potent STAT3 inhibitor with profound anti-tumor efficacy. Through cross-linking C712/C718 residues in separate STAT3 monomers with two distinct Michael receptors, PecA inhibits STAT3 DNA binding affinity and transcription activity. Molecular dynamics simulation reveals the key conformation changes of STAT3 dimers upon the di-covalent binding with PecA that abolishes its DNA interactions. Furthermore, PecA exhibits high efficacy against anaplastic large T cell lymphoma in vitro and in vivo, especially those with constitutively activated STAT3 or STAT3Y640F. In summary, our study describes a distinct and effective di-covalent modification for the dimeric compound PecA to disrupt STAT3 function.

Result Analysis
Print
Save
E-mail