1.Differentiation and Treatment of Lipid Turbidity Disease Based on Theory of "Spleen Ascending and Stomach Descending"
Yun HUANG ; Wenyu ZHU ; Wei SONG ; Xiaobo ZHANG ; Xin ZHOU ; Lele YANG ; Tao SHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(3):244-252
Lipid turbidity disease is a metabolic disease featuring lipid metabolism disorders caused by many factors such as social environment, diet, and lifestyle, which is closely related to many diseases in modern medicine, such as hyperlipidemia, obesity, fatty liver, atherosclerosis, metabolic syndrome, and cardiovascular and cerebrovascular diseases, with a wide range of influence and far-reaching harm. According to the Huangdi Neijing, lipid turbidity disease reflects the pathological change of the body's physiologic grease. Grease is the thick part of body fluids, which has the function of nourishing, and it is the initial state and source of important substances in the human body such as brain, marrow, essence, and blood. Once the grease of the human body is abnormal, it can lead to lipid turbidity disease. The Huangdi Neijing also points out the physiological relationship between the transportation and transformation of body fluids and the rise and fall of the spleen and stomach, which can deduce the pathological relationship between the occurrence of lipid turbidity disease and the abnormal rise and fall of the spleen and stomach functions. Lipid turbidity disease is caused by overconsumption of fatty and sweet foods or insufficient spleen and stomach endowments, leading to disorders of the function of promoting clear and reducing turbidity in the spleen and stomach. This leads to the transformation of thick grease in body fluids into lipid turbidity, which accumulates in the body's meridians, blood vessels, skin pores, and organs, forming various forms of metabolic diseases. The research team believed that the pathological basis of lipid turbidity disease was the abnormal rise and fall of the spleen and stomach and the obstruction of the transfer of grease. According to the different locations where lipid turbidity stays, it was divided into four common pathogenesis types: ''inability to distinguish between the clear and turbid, turbid stagnation in the Ying blood'', ''spleen not rising clear, turbid accumulation in the vessels'', ''spleen dysfunction, lipid retention in the pores'', ''spleen failure to transportation and transformation, and grease accumulation in the liver''. According to the pathogenesis, it could be divided into four common syndromes, namely, turbid stagnation in the Ying blood, turbid accumulation in the vessels, lipid retention in the pores, and grease accumulation in the liver, and the corresponding prescriptions were given for syndrome differentiation and treatment, so as to guide clinical differentiation and treatment of the lipid turbidity disease.
2.Mitophagy regulates bone metabolism
Hanmin ZHU ; Song WANG ; Wenlin XIAO ; Wenjing ZHANG ; Xi ZHOU ; Ye HE ; Wei LI
Chinese Journal of Tissue Engineering Research 2025;29(8):1676-1683
BACKGROUND:In recent years,numerous studies have shown that autophagy and mitophagy play an important role in the regulation of bone metabolism.Under non-physiological conditions,mitophagy breaks the balance of bone metabolism and triggers metabolism disorders,which affect osteoblasts,osteoclasts,osteocytes,chondrocytes,bone marrow mesenchymal stem cells,etc. OBJECTIVE:To summarize the mechanism of mitophagy in regulating bone metabolic diseases and its application in clinical treatment. METHODS:PubMed,Web of Science,CNKI,WanFang and VIP databases were searched by computer using the keywords of"mitophagy,bone metabolism,osteoblasts,osteoclasts,osteocytes,chondrocytes,bone marrow mesenchymal stem cells"in English and Chinese.The search time was from 2008 to 2023.According to the inclusion criteria,90 articles were finally included for review and analysis. RESULTS AND CONCLUSION:Mitophagy promotes the generation of osteoblasts through SIRT1,PINK1/Parkin,FOXO3 and PI3K signaling pathways,while inhibiting osteoclast function through PINK1/Parkin and SIRT1 signaling pathways.Mitophagy leads to bone loss by increasing calcium phosphate particles and tissue protein kinase K in bone tissue.Mitophagy improves the function of chondrocytes through PINK1/Parkin,PI3K/AKT/mTOR and AMPK signaling pathways.Modulation of mitophagy shows great potential in the treatment of bone diseases,but there are still some issues to be further explored,such as different stages of drug-activated mitophagy,and the regulatory mechanisms of different signaling pathways.
3.AI Rudi's Experience in Diagnosing and Treating Skin Pruritus Based on the "Unity of Restoring Form, Regulating Qi,and Harmonizing Spirit"
Wei SONG ; Tianlin YANG ; Shuihan ZHOU ; Jie ZHANG ; Qianying YU ; Min XIAO ;
Journal of Traditional Chinese Medicine 2025;66(9):883-889
This paper summarizes Professor AI Rudi's experience in the diagnosis and treatment of skin pruritus based on the "unity of restoring form, regulating qi, and harmonizing spirit", employing internal herbal medicine combined with external treatments. It is believed that the core pathogenesis of pruritus is the "imbalance of form, qi, and spirit", with disturbed spirit as the onset, disordered qi as the key pathogenic factor, and physical changes as the manifestation of the disease. The treatment principle follows "restoring form-regulating qi-harmonizing spirit", with a combination of internal and external therapies, and differentiation based on deficiency and excess. For excess conditions caused by pathogenic disturbances to the heart spirit, treatment is based on different patterns of wind-heat, damp-heat, and blood-heat, using Sangye (Morus alba)-Sangbaipi (Morus alba cortex)-Longchi (Draconis os) to disperse wind and clear heat, calm the spirit; Difuzi (Kochia scoparia)-Qinghao (Artemisia annua)-Tanxiang (Santalum album) to clear damp-heat and aromatically open the spirit; Mudanpi (Paeonia suffruticosa)-Chuanxiong (Ligusticum chuanxiong)-Shuiniujiao (Bubalus bubalis cornua) to cool the blood, activate circulation, and calm the spirit. For deficiency conditions caused by insufficient nourishment of the heart spirit, treatment is based on patterns of qi deficiency or blood deficiency, using Huangqi (Astragalus membranaceus)-Fuping (Lemna minor)-Wuweizi (Schisandra chinensis) to tonify the qi and stabilize the exterior; Heshouwu (Polygonum multiflorum)-Jili (Tribulus terrestris)-Shouwuteng (Polygonum multiflorum vine) to nourish the blood, moisten dryness, and calm the spirit. External treatments integrate traditional Chinese medicine therapies such as medicinal baths, gua sha, and ear acupuncture, with custom herbal wash formulas for restoring form, jojoba oil gua sha for regulating qi, and ear seed therapy using Wangbuliuxing (Vaccaria segetalis) for harmonizing the spirit, achieving a holistic treatment effect for form, qi, and spirit.
4.Clinical Efficacy of Zhuyuwan in Treatment of Hyperlipidemia with Syndrome of Phlegm Turbidity and Obstruction
Lele YANG ; Danmei LUO ; Jiao CHEN ; Xiaobo ZHANG ; Wei SONG ; Wenyu ZHU ; Xin ZHOU ; Xueping LI ; Tao SHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):29-37
ObjectiveTo observe the clinical efficacy and safety of Zhuyuwan in the treatment of hyperlipidemia. MethodsIn this study, hyperlipidemia patients treated in the Hospital of Chengdu University of Traditional Chinese Medicine (TCM) from September 2022 to December 2023 were randomly assigned into a control group and an observation group. Finally, 162 valid cases were included, encompassing 74 cases in the control group and 88 cases in the observation group. The control group was treated with atorvastatin calcium tablets, and the observation group with atorvastatin calcium tablets + Zhuyuwan extract granules. Both groups were treated for 8 weeks. The efficacy in terms of blood lipid level recovery, blood lipid levels, TCM syndrome distribution, efficacy in terms of TCM syndrome, and TCM symptom scores were compared between the two groups as well as between before and after treatment. Liver and kidney functions were monitored for safety assessment. ResultsIn terms of blood lipid level recovery, the total response rate in the observation group was 86.36% (76/88) and that in the control group was 86.49% (64/74), with no statistically significant difference between the two groups. After treatment, both groups showed declines in levels of triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) (P<0.05) and elevations in the level of high-density lipoprotein cholesterol (HDL-C) (P<0.05). Moreover, the observation group outperformed the control group in recovering the levels of TG, LDL-C, and HDL-C (P<0.05, P<0.01). In terms of TCM syndrome, hyperlipidemia was mostly caused by phlegm turbidity and obstruction. The total response rate in terms of TCM syndrome in the observation group was 87.30% (55/63), which was higher than that (63.46%, 33/52) in the control group (χ2=9.102, P<0.01). After treatment, the scores of total TCM symptoms, primary symptoms, and secondary symptoms decreased in both groups (P<0.05), and the observation group had lower scores than the control group (P<0.01). The observation group was superior to the control group in alleviating obesity, chest tightness, and low food intake (P<0.05). In terms of safety, the level of aminotransferase was slightly elevated in the control group, and no obvious adverse reaction was observed in the observation group, with no statistical significance in the incidence of adverse reactions. ConclusionZhuyuwan combined with atorvastatin can not only recover blood lipid levels and alleviate TCM symptoms but also reduce the occurrence of adverse reactions.
5.Exploration of Zhuyuwan in Treatment of Atherosclerosis from Perspective of Lipid Transport Disorder
Wei SONG ; Zhongyi ZHANG ; Hairong QIU ; Mei ZHAO ; Zubing ZHOU ; Tao SHEN ; Yong ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):54-61
This article discusses the key pathogenesis of atherosclerosis (AS) based on the physiological characteristics and pathological changes of lipids and introduces the therapeutic effect of Zhuyuwan on AS, aiming to provide a theoretical basis for the treatment of cardiovascular diseases from the spleen. As essential substances, lipids have the same essence but different forms. They circulate throughout the body with body fluids under the action of Yang Qi to nourish the nutrient Qi and support the defensive Qi. Lipid metabolism disorder often leads to the obstruction of Qi movement, the accumulation of dampness and turbidity, and the generation of phlegm and blood stasis. It has been proven that the formation of vulnerable plaques in AS is attributed to the interaction of three pathogenic factors: deficiency of healthy Qi, phlegm-turbidity, and collateral stasis. Their pathological essence is closely related to abnormal lipid metabolism. As lipids constitute the thick and dense components of body fluids, their impaired dispersion may lead to phlegm-turbidity and blood stasis, the pathological process of which is predominantly ascribed to the dysfunction of the spleen in distributing essence. Therefore, AS is rooted in spleen-stomach disorder, manifests as plaques formed by pathological product accumulation in vessels, with lipid transport disorder as its core pathogenesis. Specifically speaking, the dysfunction of spleen in transportation with accumulation of dampness-turbidity marks the initial stage, and blood turbidity and coagulation and phlegm-nodules accumulating in vessels represent the intermediate phase. Cold accumulation and stagnated heat transforming into toxins represent the terminal stage. Zhuyuwan, first recorded in Taiping Holy Prescriptions for Universal Relief, contains equal proportions of Coptidis Rhizoma and Evodiae Fructus. Coptidis Rhizoma, bitter and cold, exerts descending and purging actions to assist stomach Qi in lowering turbidity. Evodiae Fructus, pungent-bitter and hot, disperses obstruction and promotes free flow to support spleen Qi in ascending the clear. The compatibility of Coptidis Rhizoma and Evodiae Fructus ascends the clear and descends the turbid to harmonize Yin and Yang, assisting the spleen in distributing essence and resolving lipid accumulation to reduce lipid levels. In terms of the therapeutic mechanism, Zhuyuwan modulates lipid metabolism by correcting immune-inflammation network imbalance, improving gut microbiota composition and metabolism, and enhancing reverse cholesterol transport. By analyzing the pathological characteristics of lipid transport disorder in AS, this study delves into the intrinsic connections between cardiovascular disease and lipid transport disorder, giving novel insights into the prevention and treatment of AS.
6.Clinical Efficacy of Zhuyuwan in Treatment of Hyperlipidemia with Syndrome of Phlegm Turbidity and Obstruction
Lele YANG ; Danmei LUO ; Jiao CHEN ; Xiaobo ZHANG ; Wei SONG ; Wenyu ZHU ; Xin ZHOU ; Xueping LI ; Tao SHEN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):29-37
ObjectiveTo observe the clinical efficacy and safety of Zhuyuwan in the treatment of hyperlipidemia. MethodsIn this study, hyperlipidemia patients treated in the Hospital of Chengdu University of Traditional Chinese Medicine (TCM) from September 2022 to December 2023 were randomly assigned into a control group and an observation group. Finally, 162 valid cases were included, encompassing 74 cases in the control group and 88 cases in the observation group. The control group was treated with atorvastatin calcium tablets, and the observation group with atorvastatin calcium tablets + Zhuyuwan extract granules. Both groups were treated for 8 weeks. The efficacy in terms of blood lipid level recovery, blood lipid levels, TCM syndrome distribution, efficacy in terms of TCM syndrome, and TCM symptom scores were compared between the two groups as well as between before and after treatment. Liver and kidney functions were monitored for safety assessment. ResultsIn terms of blood lipid level recovery, the total response rate in the observation group was 86.36% (76/88) and that in the control group was 86.49% (64/74), with no statistically significant difference between the two groups. After treatment, both groups showed declines in levels of triglyceride (TG), total cholesterol (TC), and low-density lipoprotein cholesterol (LDL-C) (P<0.05) and elevations in the level of high-density lipoprotein cholesterol (HDL-C) (P<0.05). Moreover, the observation group outperformed the control group in recovering the levels of TG, LDL-C, and HDL-C (P<0.05, P<0.01). In terms of TCM syndrome, hyperlipidemia was mostly caused by phlegm turbidity and obstruction. The total response rate in terms of TCM syndrome in the observation group was 87.30% (55/63), which was higher than that (63.46%, 33/52) in the control group (χ2=9.102, P<0.01). After treatment, the scores of total TCM symptoms, primary symptoms, and secondary symptoms decreased in both groups (P<0.05), and the observation group had lower scores than the control group (P<0.01). The observation group was superior to the control group in alleviating obesity, chest tightness, and low food intake (P<0.05). In terms of safety, the level of aminotransferase was slightly elevated in the control group, and no obvious adverse reaction was observed in the observation group, with no statistical significance in the incidence of adverse reactions. ConclusionZhuyuwan combined with atorvastatin can not only recover blood lipid levels and alleviate TCM symptoms but also reduce the occurrence of adverse reactions.
7.Exploration of Zhuyuwan in Treatment of Atherosclerosis from Perspective of Lipid Transport Disorder
Wei SONG ; Zhongyi ZHANG ; Hairong QIU ; Mei ZHAO ; Zubing ZHOU ; Tao SHEN ; Yong ZHANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(13):54-61
This article discusses the key pathogenesis of atherosclerosis (AS) based on the physiological characteristics and pathological changes of lipids and introduces the therapeutic effect of Zhuyuwan on AS, aiming to provide a theoretical basis for the treatment of cardiovascular diseases from the spleen. As essential substances, lipids have the same essence but different forms. They circulate throughout the body with body fluids under the action of Yang Qi to nourish the nutrient Qi and support the defensive Qi. Lipid metabolism disorder often leads to the obstruction of Qi movement, the accumulation of dampness and turbidity, and the generation of phlegm and blood stasis. It has been proven that the formation of vulnerable plaques in AS is attributed to the interaction of three pathogenic factors: deficiency of healthy Qi, phlegm-turbidity, and collateral stasis. Their pathological essence is closely related to abnormal lipid metabolism. As lipids constitute the thick and dense components of body fluids, their impaired dispersion may lead to phlegm-turbidity and blood stasis, the pathological process of which is predominantly ascribed to the dysfunction of the spleen in distributing essence. Therefore, AS is rooted in spleen-stomach disorder, manifests as plaques formed by pathological product accumulation in vessels, with lipid transport disorder as its core pathogenesis. Specifically speaking, the dysfunction of spleen in transportation with accumulation of dampness-turbidity marks the initial stage, and blood turbidity and coagulation and phlegm-nodules accumulating in vessels represent the intermediate phase. Cold accumulation and stagnated heat transforming into toxins represent the terminal stage. Zhuyuwan, first recorded in Taiping Holy Prescriptions for Universal Relief, contains equal proportions of Coptidis Rhizoma and Evodiae Fructus. Coptidis Rhizoma, bitter and cold, exerts descending and purging actions to assist stomach Qi in lowering turbidity. Evodiae Fructus, pungent-bitter and hot, disperses obstruction and promotes free flow to support spleen Qi in ascending the clear. The compatibility of Coptidis Rhizoma and Evodiae Fructus ascends the clear and descends the turbid to harmonize Yin and Yang, assisting the spleen in distributing essence and resolving lipid accumulation to reduce lipid levels. In terms of the therapeutic mechanism, Zhuyuwan modulates lipid metabolism by correcting immune-inflammation network imbalance, improving gut microbiota composition and metabolism, and enhancing reverse cholesterol transport. By analyzing the pathological characteristics of lipid transport disorder in AS, this study delves into the intrinsic connections between cardiovascular disease and lipid transport disorder, giving novel insights into the prevention and treatment of AS.
8.Dynamics of eosinophil infiltration and microglia activation in brain tissues of mice infected with Angiostrongylus cantonensis
Fanna WEI ; Renjie ZHANG ; Yahong HU ; Xiaoyu QIN ; Yunhai GUO ; Xiaojin MO ; Yan LU ; Jiahui SUN ; Yan ZHOU ; Jiatian GUO ; Peng SONG ; Yanhong CHU ; Bin XU ; Ting ZHANG ; Yuchun CAI ; Muxin CHEN
Chinese Journal of Schistosomiasis Control 2025;37(2):163-175
Objective To investigate the changes in eosinophil counts and the activation of microglial cells in the brain tissues of mice at different stages of Angiostrongylus cantonensis infection, and to examine the role of microglia in regulating the progression of angiostrongyliasis and unravel the possible molecular mechanisms. Methods Fifty BALB/c mice were randomly divided into the control group and the 7-d, 14-d, 21-day and 25-d infection groups, of 10 mice in each group. All mice in infection groups were infected with 30 stage III A. cantonensis larvae by gavage, and animals in the control group was given an equal amount of physiological saline. Five mice were collected from each of infection groups on days 7, 14, 21 d and 25 d post-infection, and 5 mice were collected from the control group on the day of oral gavage. The general and focal functional impairment was scored using the Clark scoring method to assess the degree of mouse neurological impairment. Five mice from each of infection groups were sacrificed on days 7, 14, 21 d and 25 d post-infection, and 5 mice from the control group were sacrificed on the day of oral gavage. Mouse brain tissues were sampled, and the pathological changes of brain tissues were dynamically observed using hematoxylin and eosin (HE) staining. Immunofluorescence staining with eosinophilic cationic protein (ECP) and ionized calcium binding adaptor molecule 1 (Iba1) was used to assess the degree of eosinophil infiltration and the counts of microglial cells in mouse brain tissues in each group, and the morphological parameters of microglial cells (skeleton analysis and fractal analysis) were quantified by using Image J software to determine the morphological changes of microglial cells. In addition, the expression of M1 microglia markers Fcγ receptor III (Fcgr3), Fcγ receptor IIb (Fcgr2b) and CD86 antigen (Cd86), M2 microglia markers Arginase 1 (Arg1), macrophage mannose receptor C-type 1 (Mrc1), chitinase-like 3 (Chil3), and phagocytosis genes myeloid cell triggering receptor expressed on myeloid cells 2 (Trem2), CD68 antigen (Cd68), and apolipoprotein E (Apoe) was quantified using real-time quantitative reverse transcription PCR (RT-qPCR) assay in the mouse cerebral cortex of mice post-infection. Results A large number of A. cantonensis larvae were seen on the mouse meninges surface post-infection, and many neuronal nuclei were crumpled and deeply stained, with a large number of bleeding points in the meninges. The median Clark scores of mouse general functional impairment were 0 (interquartile range, 0), 0 (interquartile range, 0.5), 6 (interquartile range, 1.0), 14 (interquartile range, 8.5) points and 20 (interquartile range, 9.0) points in the control group and the 7-d, 14-d, 21-d and 25-d groups, respectively (H = 22.45, P < 0.01), and the median Clark scores of mouse focal functional impairment were 0 (interquartile range, 0), 2 (interquartile range, 2.5), 7 (interquartile range, 3.0), 18 (interquartile range, 5.0) points and 25 (interquartile range, 6.5) points in the control group and the 7-d, 14-d, 21-d and 25-d groups, respectively (H = 22.72, P < 0.01). The mean scores of mice general and focal functional impairment were all higher in the infection groups than in the control group (all P values < 0.05). Immunofluorescence staining showed a significant difference in the eosinophil counts in mouse brain tissues among the five groups (F = 40.05, P < 0.000 1), and the eosinophil counts were significantly higher in mouse brain tissues in the 14-d (3.08 ± 0.78) and 21-d infection groups (5.97 ± 1.37) than in the control group (1.00 ± 0.28) (both P values < 0.05). Semi-quantitative analysis of microglia immunofluorescence showed a significant difference in the counts of microglial cells among the five groups (F = 17.66, P < 0.000 1), and higher Iba1 levels were detected in mouse brain tissues in 14-d (5.75 ± 1.28), 21-d (6.23 ± 1.89) and 25-d infection groups (3.70 ± 1.30) than in the control group (1.00 ± 0.30) (all P values < 0.05). Skeleton and fractal analyses showed that the branch length [(162.04 ± 34.10) μm vs. (395.37 ± 64.11) μm; t = 5.566, P < 0.05] and fractal dimension of microglial cells (1.30 ± 0.01 vs. 1.41 ± 0.03; t = 5.266, P < 0.05) were reduced in mouse brain tissues in the 21-d infection group relative to the control group. In addition, there were significant differences among the 5 groups in terms of M1 and M2 microglia markers Fcgr3 (F = 48.34, P < 0.05), Fcgr2b (F = 55.46, P < 0.05), Cd86 (F = 24.44, P < 0.05), Arg1 (F = 31.18, P < 0.05), Mrc1 (F = 15.42, P < 0.05) and Chil3 (F = 24.41, P < 0.05), as well as phagocytosis markers Trem2 (F = 21.19, P < 0.05), Cd68 (F = 43.95, P < 0.05) and Apoe (F = 7.12, P < 0.05) in mice brain tissues. Conclusions A. cantonensis infections may induce severe pathological injuries in mouse brain tissues that are characterized by massive eosinophil infiltration and persistent activation of microglia cells, thereby resulting in progressive deterioration of neurological functions.
9.AI Rudi's Experience in Treating Skin Abscesses with the "Three Parts and Six Methods" Through Combination of Internal and External Therapies
Wei SONG ; Yang ZHOU ; Shuihan ZHOU ; Min XIAO ;
Journal of Traditional Chinese Medicine 2025;66(12):1207-1211
This paper summarizes Professor AI Rudi's clinical experience in treating skin abscesses using the method of "three parts and six methods", which emphasize a combined internal and external therapeutic approach. He identifies retained pathogenic heat in the skin as the key etiological factor and proposes treatment principles tailored to the anatomical location of the lesions. For abscesses in the upper part of the body (head, face and neck), wind-heat and blood-heat are considered dominant, and the treatment focuses on dispersing the exterior, clearing heat, cooling the blood, and reducing swelling, with custom formulations such as self-fomulated Shufeng Xiaodu Decoction (疏风消毒饮) and Jiedu Xiaozhong Decoction (解毒消肿汤). For those in the middle part of the body (chest, abdomen, back and upper limbs), constrained heat and deficiency-heat predominate, and the treatment aims to relieve internal heat stagnation, reduce swelling, and expel toxins, using formulations like self-fomulated Qinggan Jiedu Decoction (清肝解毒汤) and Xiaozhong Erchen Decoction (消肿二陈汤). For abscesses in the lower part of the body in the (buttocks, perineum and lower limbs), damp-heat and stagnant heat are the main patterns, and the strategy is to clear damp-heat and resolve blood stasis, with formulations such as self-fomulated Jiedu Simiao Powder (解毒四妙散) and Qingjie Sanyu Decoction (清解散瘀汤). External therapies are equally emphasized: for unruptured lesions, self-fomulated Wumiao Ointment (五妙膏) is used to detoxify and reduce swelling, while for ruptured lesions, Danhuang Oil (蛋黄油) is applied to promote wound healing and relieve pain.
10.S100A9 as a promising therapeutic target for diabetic foot ulcers.
Renhui WAN ; Shuo FANG ; Xingxing ZHANG ; Weiyi ZHOU ; Xiaoyan BI ; Le YUAN ; Qian LV ; Yan SONG ; Wei TANG ; Yongquan SHI ; Tuo LI
Chinese Medical Journal 2025;138(8):973-981
BACKGROUND:
Diabetic foot is a complex condition with high incidence, recurrence, mortality, and disability rates. Current treatments for diabetic foot ulcers are often insufficient. This study was conducted to identify potential therapeutic targets for diabetic foot.
METHODS:
Datasets related to diabetic foot and diabetic skin were retrieved from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were identified using R software. Enrichment analysis was conducted to screen for critical gene functions and pathways. A protein interaction network was constructed to identify node genes corresponding to key proteins. The DEGs and node genes were overlapped to pinpoint target genes. Plasma and chronic ulcer samples from diabetic and non-diabetic individuals were collected. Western blotting, immunohistochemistry, and enzyme-linked immunosorbent assays were performed to verify the S100 calcium binding protein A9 (S100A9), inflammatory cytokine, and related pathway protein levels. Hematoxylin and eosin staining was used to measure epidermal layer thickness.
RESULTS:
In total, 283 common DEGs and 42 node genes in diabetic foot ulcers were identified. Forty-three genes were differentially expressed in the skin of diabetic and non-diabetic individuals. The overlapping of the most significant DEGs and node genes led to the identification of S100A9 as a target gene. The S100A9 level was significantly higher in diabetic than in non-diabetic plasma (178.40 ± 44.65 ng/mL vs. 40.84 ± 18.86 ng/mL) and in chronic ulcers, and the wound healing time correlated positively with the plasma S100A9 level. The levels of inflammatory cytokines (tumor necrosis factor-α, interleukin [IL]-1, and IL-6) and related pathway proteins (phospho-extracellular signal regulated kinase [ERK], phospho-p38, phospho-p65, and p-protein kinase B [Akt]) were also elevated. The epidermal layer was notably thinner in chronic diabetic ulcers than in non-diabetic skin (24.17 ± 25.60 μm vs. 412.00 ± 181.60 μm).
CONCLUSIONS
S100A9 was significantly upregulated in diabetic foot and was associated with prolonged wound healing. S100A9 may impair diabetic wound healing by disrupting local inflammatory responses and skin re-epithelialization.
Calgranulin B/therapeutic use*
;
Diabetic Foot/metabolism*
;
Humans
;
Datasets as Topic
;
Computational Biology
;
Mice, Inbred C57BL
;
Animals
;
Mice
;
Protein Interaction Maps
;
Immunohistochemistry

Result Analysis
Print
Save
E-mail