1.Cloning, subcellular localization and expression analysis of SmIAA7 gene from Salvia miltiorrhiza
Yu-ying HUANG ; Ying CHEN ; Bao-wei WANG ; Fan-yuan GUAN ; Yu-yan ZHENG ; Jing FAN ; Jin-ling WANG ; Xiu-hua HU ; Xiao-hui WANG
Acta Pharmaceutica Sinica 2025;60(2):514-525
The auxin/indole-3-acetic acid (Aux/IAA) gene family is an important regulator for plant growth hormone signaling, involved in plant growth, development, as well as response to environmental stresses. In the present study, we identified
2.Predicting Hepatocellular Carcinoma Using Brightness Change Curves Derived From Contrast-enhanced Ultrasound Images
Ying-Ying CHEN ; Shang-Lin JIANG ; Liang-Hui HUANG ; Ya-Guang ZENG ; Xue-Hua WANG ; Wei ZHENG
Progress in Biochemistry and Biophysics 2025;52(8):2163-2172
ObjectivePrimary liver cancer, predominantly hepatocellular carcinoma (HCC), is a significant global health issue, ranking as the sixth most diagnosed cancer and the third leading cause of cancer-related mortality. Accurate and early diagnosis of HCC is crucial for effective treatment, as HCC and non-HCC malignancies like intrahepatic cholangiocarcinoma (ICC) exhibit different prognoses and treatment responses. Traditional diagnostic methods, including liver biopsy and contrast-enhanced ultrasound (CEUS), face limitations in applicability and objectivity. The primary objective of this study was to develop an advanced, light-weighted classification network capable of distinguishing HCC from other non-HCC malignancies by leveraging the automatic analysis of brightness changes in CEUS images. The ultimate goal was to create a user-friendly and cost-efficient computer-aided diagnostic tool that could assist radiologists in making more accurate and efficient clinical decisions. MethodsThis retrospective study encompassed a total of 161 patients, comprising 131 diagnosed with HCC and 30 with non-HCC malignancies. To achieve accurate tumor detection, the YOLOX network was employed to identify the region of interest (ROI) on both B-mode ultrasound and CEUS images. A custom-developed algorithm was then utilized to extract brightness change curves from the tumor and adjacent liver parenchyma regions within the CEUS images. These curves provided critical data for the subsequent analysis and classification process. To analyze the extracted brightness change curves and classify the malignancies, we developed and compared several models. These included one-dimensional convolutional neural networks (1D-ResNet, 1D-ConvNeXt, and 1D-CNN), as well as traditional machine-learning methods such as support vector machine (SVM), ensemble learning (EL), k-nearest neighbor (KNN), and decision tree (DT). The diagnostic performance of each method in distinguishing HCC from non-HCC malignancies was rigorously evaluated using four key metrics: area under the receiver operating characteristic (AUC), accuracy (ACC), sensitivity (SE), and specificity (SP). ResultsThe evaluation of the machine-learning methods revealed AUC values of 0.70 for SVM, 0.56 for ensemble learning, 0.63 for KNN, and 0.72 for the decision tree. These results indicated moderate to fair performance in classifying the malignancies based on the brightness change curves. In contrast, the deep learning models demonstrated significantly higher AUCs, with 1D-ResNet achieving an AUC of 0.72, 1D-ConvNeXt reaching 0.82, and 1D-CNN obtaining the highest AUC of 0.84. Moreover, under the five-fold cross-validation scheme, the 1D-CNN model outperformed other models in both accuracy and specificity. Specifically, it achieved accuracy improvements of 3.8% to 10.0% and specificity enhancements of 6.6% to 43.3% over competing approaches. The superior performance of the 1D-CNN model highlighted its potential as a powerful tool for accurate classification. ConclusionThe 1D-CNN model proved to be the most effective in differentiating HCC from non-HCC malignancies, surpassing both traditional machine-learning methods and other deep learning models. This study successfully developed a user-friendly and cost-efficient computer-aided diagnostic solution that would significantly enhances radiologists’ diagnostic capabilities. By improving the accuracy and efficiency of clinical decision-making, this tool has the potential to positively impact patient care and outcomes. Future work may focus on further refining the model and exploring its integration with multimodal ultrasound data to maximize its accuracy and applicability.
3.Alterations of diffusion kurtosis measures in gait-related white matter in the "ON-OFF state" of Parkinson's disease.
Xuan WEI ; Shiya WANG ; Mingkai ZHANG ; Ying YAN ; Zheng WANG ; Wei WEI ; Houzhen TUO ; Zhenchang WANG
Chinese Medical Journal 2025;138(9):1094-1102
BACKGROUND:
Gait impairment is closely related to quality of life in patients with Parkinson's disease (PD). This study aimed to explore alterations in brain microstructure in PD patients and healthy controls (HCs) and to identify the correlation of gait impairment in the ON and OFF states of patients with PD, respectively.
METHODS:
We enrolled 24 PD patients and 29 HCs from the Movement Disorders Program at Beijing Friendship Hospital Capital Medical University between 2019 and 2020. We acquired magnetic resonance imaging (MRI) scans and processed the diffusion kurtosis imaging (DKI) images. Preprocessing of diffusion-weighted data was performed with Mrtrix3 software, using a directional distribution function to track participants' main white matter fiber bundles. Demographic and clinical characteristics were recorded. Quantitative gait and clinical scales were used to assess the status of medication ON and OFF in PD patients.
RESULTS:
The axial kurtosis (AK), mean kurtosis (MK), and radial kurtosis (RK) of five specific white matter fiber tracts, the bilateral corticospinal tract, left superior longitudinal fasciculus, left anterior thalamic radiation, forceps minor, and forceps major were significantly higher in PD patients compared to HCs. Additionally, the MK values were negatively correlated with Timed Up and Go Test (TUG) scores in both the ON and OFF in PD patients. Within the PD group, higher AK, MK, and RK values, whether the patients were ON or OFF, were associated with better gait performance (i.e., higher velocity and stride length).
CONCLUSIONS
PD exhibits characteristic regional patterns of white matter microstructural degradation. Correlations between objective gait parameters and DKI values suggest that dopamine-responsive gait function depends on preserved white matter microstructure. DKI-based Tract-Based Spatial Statistics (TBSS) analysis may serve as a tool for evaluating PD-related motor impairments (e.g., gait impairment) and could yield potential neuroimaging biomarkers.
Humans
;
Parkinson Disease/diagnostic imaging*
;
White Matter/physiopathology*
;
Male
;
Female
;
Middle Aged
;
Aged
;
Gait/physiology*
;
Diffusion Magnetic Resonance Imaging/methods*
;
Diffusion Tensor Imaging/methods*
4.Associations between statins and all-cause mortality and cardiovascular events among peritoneal dialysis patients: A multi-center large-scale cohort study.
Shuang GAO ; Lei NAN ; Xinqiu LI ; Shaomei LI ; Huaying PEI ; Jinghong ZHAO ; Ying ZHANG ; Zibo XIONG ; Yumei LIAO ; Ying LI ; Qiongzhen LIN ; Wenbo HU ; Yulin LI ; Liping DUAN ; Zhaoxia ZHENG ; Gang FU ; Shanshan GUO ; Beiru ZHANG ; Rui YU ; Fuyun SUN ; Xiaoying MA ; Li HAO ; Guiling LIU ; Zhanzheng ZHAO ; Jing XIAO ; Yulan SHEN ; Yong ZHANG ; Xuanyi DU ; Tianrong JI ; Yingli YUE ; Shanshan CHEN ; Zhigang MA ; Yingping LI ; Li ZUO ; Huiping ZHAO ; Xianchao ZHANG ; Xuejian WANG ; Yirong LIU ; Xinying GAO ; Xiaoli CHEN ; Hongyi LI ; Shutong DU ; Cui ZHAO ; Zhonggao XU ; Li ZHANG ; Hongyu CHEN ; Li LI ; Lihua WANG ; Yan YAN ; Yingchun MA ; Yuanyuan WEI ; Jingwei ZHOU ; Yan LI ; Caili WANG ; Jie DONG
Chinese Medical Journal 2025;138(21):2856-2858
5.Identification of GSK3 family and regulatory effects of brassinolide on growth and development of Nardostachys jatamansi.
Yu-Yan LEI ; Zheng MA ; Jing WEI ; Wen-Bing LI ; Ying LI ; Zheng-Ming YANG ; Shao-Shan ZHANG ; Jing-Qiu FENG ; Hua-Chun SHENG ; Yuan LIU
China Journal of Chinese Materia Medica 2025;50(2):395-403
This study identified 8 members including NjBIN2 of the GSK3 family in Nardostachys jatamansi by bioinformatics analysis. Moreover, the phylogenetic tree revealed that the GKS3 family members of N. jatamansi had a close relationship with those of Arabidopsis. RT-qPCR results showed that NjBIN2 presented a tissue-specific expression pattern with the highest expression in roots, suggesting that NjBIN2 played a role in root growth and development. In addition, the application of epibrassinolide or the brassinosteroid(BR) synthesis inhibitor(brassinazole) altered the expression pattern of NjBIN2 and influenced the photomorphogenesis(cotyledon opening) and root development of N. jatamansi, which provided direct evidence about the functions of NjBIN2. In conclusion, this study highlights the roles of BIN2 in regulating the growth and development of N. jatamansi by analyzing the expression pattern and biological function of NjBIN2. It not only enriches the understanding about the regulatory mechanism of the growth and development of N. jatamansi but also provides a theoretical basis and potential gene targets for molecular breeding of N. jatamansi with improved quality in the future.
Brassinosteroids/metabolism*
;
Steroids, Heterocyclic/metabolism*
;
Gene Expression Regulation, Plant/drug effects*
;
Plant Proteins/metabolism*
;
Phylogeny
;
Nardostachys/metabolism*
;
Plant Growth Regulators/pharmacology*
;
Plant Roots/drug effects*
6.Effect and mechanism of Bufei Decoction on improving Klebsiella pneumoniae pneumonia in rats by regulating IL-17 signaling pathway.
Li-Na HUANG ; Zheng-Ying QIU ; Xiang-Yi PAN ; Chen LIU ; Si-Fan LI ; Shao-Guang GE ; Xiong-Wei SHI ; Hao CAO ; Rui-Hua XIN ; Fang-di HU
China Journal of Chinese Materia Medica 2025;50(11):3097-3107
Based on the interleukin-17(IL-17) signaling pathway, this study explores the effect and mechanism of Bufei Decoction on Klebsiella pneumoniae pneumonia in rats. SD rats were randomly divided into the control group, model group, Bufei Decoction low-dose group(6.68 g·kg~(-1)·d~(-1)), Bufei Decoction high-dose group(13.36 g·kg~(-1)·d~(-1)), and dexamethasone group(1.04 mg·kg~(-1)·d~(-1)), with 10 rats in each group. A pneumonia model was established by tracheal drip injection of K. pneumoniae. After successful model establishment, the improvement in lung tissue damage was observed following drug administration. Core targets and signaling pathways were screened using transcriptomics techniques. Real-time fluorescence quantitative polymerase chain reaction was used to detect the mRNA expression of core targets interleukin-6(IL-6), interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and chemokine CXC ligand 6(CXCL6). Western blot was used to assess key proteins in the IL-17 signaling pathway, including interleukin-17A(IL-17A), nuclear transcription factor-κB activator 1(Act1), tumor necrosis factor receptor-associated factor 6(TRAF6), and downstream phosphorylated p38 mitogen-activated protein kinase(p-p38 MAPK), and phosphorylated nuclear factor-κB p65(p-NF-κB p65). Apoptosis of lung tissue cells was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling(TUNEL). The results showed that, compared with the control group, the model group exhibited significant pathological damage in lung tissue. The mRNA expression of IL-6, IL-1β, TNF-α, and CXCL6, as well as the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly increased, and the number of apoptotic cells was notably higher, indicating successful model establishment. Compared with the model group, both low-and high-dose groups of Bufei Decoction showed reduced pathological damage in lung tissue. The mRNA expression levels of IL-6, IL-1β, TNF-α, and CXCL6, and the protein levels of IL-17A, Act1, TRAF6, p-p38 MAPK/p38 MAPK, and p-NF-κB p65/NF-κB p65, were significantly decreased, with a significant reduction in apoptotic cells in the high-dose group. In conclusion, Bufei Decoction can effectively improve lung tissue damage and reduce inflammation in rats with K. pneumoniae. The mechanism may involve the regulation of the IL-17 signaling pathway and the reduction of apoptosis.
Animals
;
Interleukin-17/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats, Sprague-Dawley
;
Signal Transduction/drug effects*
;
Rats
;
Male
;
Klebsiella pneumoniae/physiology*
;
Klebsiella Infections/immunology*
;
Humans
;
Lung/drug effects*
7.Progress on imaging techniques to assessent of the extent of chronic osteomyelitis.
Wei-Dong SHI ; Wen-Xing HAN ; Jian-Zheng ZHANG ; Rong-Ji ZHANG ; Hong-Ying HE
China Journal of Orthopaedics and Traumatology 2025;38(3):314-318
Incomplete debridement of chronic osteomyelitis is the main factor leading to recurrence. For the treatment of chronic osteomyelitis, the complete elimination of the source of infection is the key to preventing recurrence. This process includes not only the complete removal of infected lesions, dead bone, accreted scar tissue and granulation tissue, but also the elimination of dead space and improved local blood circulation. In these steps, debridement is a core procedure, and judging the scope of debridement is the premise of whether it could be completely debridement. This article systematically reviewed the application of different imaging techniques in evaluating the scope of chronic osteomyelitis infection, and discusses its future development trend. Although traditional plain X-ray film could preliminarily indicate osteomyelitis, it is difficult to determine the infection scope. CT scan has the function of accurate anatomic localization, which is important for preoperative assessment of the scope of bone infection, but the recognition of soft tissue information is limited. MRI, with its high sensitivity, clearly distinguishes between infected bone and soft tissue, which plays an important role in the evaluation of soft tissue infection, but may overestimate the extent of bone infection. Nuclide techniques such as 18F-FDG PET/CT and SPECT/CT show great potential for accurately assessing the extent of infection before surgery. In the future, by optimizing the combination of different imaging technologies, combining clinical symptoms, intraoperative conditions and pathological results, and developing an image analysis platform based on artificial intelligence, it will be able to more accurately assess the scope of infection, provide more effective and personalized treatment plans for patients with chronic osteomyelitis, enhance treatment effects, and significantly improve quality of life of patients.
Humans
;
Osteomyelitis/diagnosis*
;
Chronic Disease
;
Magnetic Resonance Imaging
;
Tomography, X-Ray Computed
8.Autophagy in erectile dysfunction: focusing on apoptosis and fibrosis.
Pei-Yue LUO ; Jun-Rong ZOU ; Tao CHEN ; Jun ZOU ; Wei LI ; Qi CHEN ; Le CHENG ; Li-Ying ZHENG ; Biao QIAN
Asian Journal of Andrology 2025;27(2):166-176
In most types of erectile dysfunction, particularly in advanced stages, typical pathological features observed are reduced parenchymal cells coupled with increased tissue fibrosis. However, the current treatment methods have shown limited success in reversing these pathologic changes. Recent research has revealed that changes in autophagy levels, along with alterations in apoptosis and fibrosis-related proteins, are linked to the progression of erectile dysfunction, suggesting a significant association. Autophagy, known to significantly affect cell fate and tissue fibrosis, is currently being explored as a potential treatment modality for erectile dysfunction. However, these present studies are still in their nascent stage, and there are limited experimental data available. This review analyzes erectile dysfunction from a pathological perspective. It provides an in-depth overview of how autophagy is involved in the apoptotic processes of smooth muscle and endothelial cells and its role in the fibrotic processes occurring in the cavernosum. This study aimed to develop a theoretical framework for the potential effectiveness of autophagy in preventing and treating erectile dysfunction, thus encouraging further investigation among researchers in this area.
Male
;
Humans
;
Autophagy/physiology*
;
Apoptosis/physiology*
;
Erectile Dysfunction/physiopathology*
;
Fibrosis
;
Penis/pathology*
;
Animals
;
Endothelial Cells/pathology*
;
Myocytes, Smooth Muscle/pathology*
9.Identification of the Novel Allele HLA-B*54:01:11 Detected by NGS Using the Third Generation Sequencing Technology.
Nan-Ying CHEN ; Yi-Zheng HE ; Wen-Wen PI ; Qi LI ; Li-Na DONG ; Wei ZHANG
Journal of Experimental Hematology 2025;33(2):565-568
OBJECTIVE:
To distinguish the ambiguous genotyping results of human leukocyte antigen (HLA), identify a novel HLA-B allele and analyze the nucleotide sequence.
METHODS:
A total of 2 076 umbilical core blood samples from the Zhejiang Cord Blood Bank in 2022 were detected using the next generation sequencing technology (NGS) based on the Ion Torrent S5 platform. Among these a rare HLA-B allele with ambiguous combination result containing a base mutation was identified, and was further confimed by the third-generation sequencing (TGS) based on the nanopore technology.
RESULTS:
The NGS typing result of HLA-B locus showed HLA-B* 46:18, 54:06 or HLA-B*46:01, 54:XX (including a base mutation), and nanopore sequencing confirmed the typing as HLA-B*46:01, 54:XX (including a base mutation). Compared with HLA-B*54:01:01:01, the HLA-B*54:XX allele showed one single nucleotide substitution at position 1014 T>C in exon 6, with no amino acid change. The nucleotide sequence of the novel HLA-B*54:XX has been submitted to the GenBank nucleotide sequence database and the accession number OP853532 was assigned.
CONCLUSION
A ambiguous genotyping of the HLA-B Locus detected by NGS was distinguished by nanopore sequencing and a new HLA-B allele was successfully identified, which was officially named as HLA-B*54:01:11 by the World Health Organization Nomenclature Committee for Factors of the HLA System.
Humans
;
High-Throughput Nucleotide Sequencing
;
Alleles
;
HLA-B Antigens/genetics*
;
Genotype
;
Mutation
;
Sequence Analysis, DNA
;
Base Sequence
10.Expression and Clinical Significance of CaMKIIγ in Patients with Acute Myeloid Leukemia.
Ming-Kai LIU ; Xu DAI ; Xiao-Ying ZHAO ; Wei-Wei ZHENG ; Ya-Jing MA
Journal of Experimental Hematology 2025;33(3):726-732
OBJECTIVE:
To investigate the expression and potential mechanism of calcium/calmodulin-dependent protein kinase II gamma (CaMKIIγ) in patients with acute myeloid leukemia (AML).
METHODS:
Peripheral blood samples were collected from 90 AML patients, and mononuclear cells were isolated. The expression of CaMKIIγ was measured using real-time quantitative PCR and Western blot. The diagnostic value of CaMKIIγ for AML was assessed, and its correlation with clinical characteristics was analyzed using the clinical data of patients. Additionally, the molecular mechanisms of CaMKIIγ were preliminarily explored.
RESULTS:
Compared with the control group, the expression of CaMKIIγ was significantly upregulated in AML patients. Receiver operating characteristic (ROC) curve analysis showed that CaMKIIγ could serve as a promising biomarker for distinguishing AML patients from healthy individuals. Furthermore, CaMKIIγ was significantly correlated with white blood cell (WBC) count and FLT3-ITD mutation. CaMKIIγ was highly expressed in both newly diagnosed and relapsed AML patients, while decreased during remission. In AML cell lines, the expression levels of CaMKIIγ were all elevated. Inhibition of phosphorylated CaMKIIγ by berbamine led to a decrease in pAKT and pSTAT5 expression.
CONCLUSION
CaMKIIγ is significantly upregulated in AML patients, and is associated with poor clinicopathological features and unfavorable prognosis. It may serve as a prognostic marker and potential therapeutic target in AML. Its expression may be related to the activation of pAKT and pSTAT5, suggesting that CaMKIIγ may contribute to the development and progression of AML through the activation of the AKT/STAT5 signaling pathway.
Humans
;
Leukemia, Myeloid, Acute/metabolism*
;
Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism*
;
STAT5 Transcription Factor/metabolism*
;
Male
;
Female
;
Proto-Oncogene Proteins c-akt/metabolism*
;
Mutation
;
Middle Aged
;
Adult
;
Clinical Relevance

Result Analysis
Print
Save
E-mail