1.Evaluation of the Safety and Efficacy of Bone Cement in Experimental Pigs Using Vertebroplasty
Zhenhua LIN ; Xiangyu CHU ; Zhenxi WEI ; Chuanjun DONG ; Zenglin ZHAO ; Xiaoxia SUN ; Qingyu LI ; Qi ZHANG
Laboratory Animal and Comparative Medicine 2025;45(4):466-472
ObjectiveThe full name of vertebroplasty is percutaneous vertebroplasty (PVP). It is a clinical technique that injects bone cement into the diseased vertebral body to achieve strengthening of the vertebra. The research on the safety and efficacy of bone cement is the basis for clinical application. In this study, vertebroplasty is used to evaluate and compare the safety and efficacy of Tecres and radiopaque bone cement in experimental pigs, and to determine the puncture method suitable for pigs and the pre-clinical evaluation method for the safety and efficacy of bone cement. MethodsTwenty-four experimental pigs (with a body weight of 60-80 kg) were randomly divided into an experimental group (Group A) and a control group (Group B). Group A was the Tecres bone cement group, and Group B was the radiopaque bone cement group, with 12 pigs in each group. Under the monitoring of a C-arm X-ray machine, the materials were implanted into the 1st lumbar vertebra (L1) and 4th lumbar vertebra (L4) of the pigs via percutaneous puncture using the unilateral pedicle approach. The animals were euthanized at 4 weeks and 26 weeks after the operation, respectively. The L4 vertebrae were taken for compressive strength testing, and the L1 vertebrae were taken for hard tissue pathological examination to observe the inflammatory response, bone necrosis, and degree of osseointegration at the implantation site. ResultsThe test results of compressive strength between groups A and B showed no significant difference at 4 weeks and 26 weeks after bone cement implantation (P > 0.05). Observation under an optical microscope (×100) revealed that at 4 weeks postoperatively, both groups A and B showed that the bone cement was surrounded by proliferative fibrous tissue, with lymphocyte infiltration around it. The bone cement was combined with bone tissue, the trabecular arrangement was disordered, and osteoblasts and a small amount of osteoid were formed. At 26 weeks postoperatively, bone cement was visible in both groups A and B. The new bone tissue was mineralized, the trabeculae were fused, the trabecular structure was regular and dense with good continuity, and no obvious inflammatory reaction was observed. ConclusionIn experimental pig vertebrae, there were no significant differences observed in the compressive strength, inflammation response, bone destruction, and integration with the bone between Tecres and non-radiopaque bone cement. Both exhibited good biocompatibility and osteogenic properties. It indicates that using vertebroplasty to evaluate the safety and efficacy of bone cement in pigs is scientifically sound.
2.Real-world long-term outcomes of non-small cell lung cancer patients undergoing neoadjuvant treatment with or without immune checkpoint inhibitors.
Bolun ZHOU ; Lin LI ; Fan ZHANG ; Qilin HUAI ; Liang ZHAO ; Fengwei TAN ; Qi XUE ; Wei GUO ; Shugeng GAO
Chinese Medical Journal 2025;138(22):2963-2973
BACKGROUND:
Immune checkpoint inhibitors (ICIs) have been included in various neoadjuvant therapy (NAT) regimens for non-small cell lung cancer (NSCLC). However, due to the relatively short period for the use of ICIs in NAT, patients' clinical outcomes with different regimens are uncertain. Our study aims to examine the efficacy of neoadjuvant immunotherapy (NAIT) for NSCLC patients and compare the overall survival (OS) and event-free survival (EFS) of patients receiving different NAT regimens.
METHODS:
This study retrospectively included 308 NSCLC patients treated with different NAT regimens and subsequent surgery in National Cancer Center between August 1, 2016 and July 31, 2022. Kaplan-Meier survival analysis and Cox proportional hazards regression analysis were conducted to evaluate the prognosis of patients.
RESULTS:
With a median follow-up of 27.5 months, the 1-year OS rates were 98.8% and 96.2%, and the 2-year OS rates were 96.6% and 85.8% in patients of the NAIT and neoadjuvant chemotherapy (NACT) group, respectively (hazard ratio [HR], 0.339; 95% confidence interval [CI], 0.160-0.720; P = 0.003). The 1-year EFS rates were 96.0% and 88.0%, and the 2-year EFS rates were 92.0% and 77.7% for patients in the NAIT and NACT groups, respectively (HR, 0.438; 95% CI, 0.276-0.846; P = 0.010). For patients who did not achieve pathological complete response (pCR), significantly longer OS ( P = 0.012) and EFS ( P = 0.019) were observed in patients receiving NAIT than those receiving NACT. Different NAT regimens had little effect on surgery and the postoperative length of stay (6 [4, 7] days vs . 6 [4, 7] days, Z = -0.227, P = 0.820).
CONCLUSIONS
NAIT exhibited superior efficacy to NACT for NSCLC, resulting in longer OS and EFS. The OS and EFS benefits were also observed among patients in the NAIT group who did not achieve pCR.
Humans
;
Carcinoma, Non-Small-Cell Lung/mortality*
;
Male
;
Female
;
Lung Neoplasms/mortality*
;
Middle Aged
;
Immune Checkpoint Inhibitors/therapeutic use*
;
Neoadjuvant Therapy/methods*
;
Retrospective Studies
;
Aged
;
Adult
;
Kaplan-Meier Estimate
;
Treatment Outcome
;
Immunotherapy/methods*
3.Research progress on the mechanisms of Tau phosphorylation and its kinases in hypoxic-ischemic brain damage.
Qi-Yi HUANG ; You XIANG ; Jia-Hang TANG ; Li-Jia CHEN ; Kun-Lin LI ; Wei-Fang ZHAO ; Qian WANG
Acta Physiologica Sinica 2025;77(1):139-150
Hypoxic-ischemic brain damage (HIBD) is one of the main causes of disability in middle-aged and elderly people, as well as high mortality rates and long-term physical impairments in newborns. The pathological manifestations of HIBD include neuronal damage and loss of myelin sheaths. Tau protein is an important microtubule-associated protein in brain, exists in neurons and oligodendrocytes, and regulates various cellular activities such as cell differentiation and maturation, axonal transport, and maintenance of cellular cytoskeleton structure. Phosphorylation is a common chemical modification of Tau. In physiological condition, it maintains normal cell cytoskeleton and biological functions by regulating Tau structure and function. In pathological conditions, it leads to abnormal Tau phosphorylation and influences its structure and functions, resulting in Tauopathies. Studies have shown that brain hypoxia-ischemia could cause abnormal alteration in Tau phosphorylation, then participating in the pathological process of HIBD. Meanwhile, brain hypoxia-ischemia can induce oxidative stress and inflammation, and multiple Tau protein kinases are activated and involved in Tau abnormal phosphorylation. Therefore, exploring specific molecular mechanisms by which HIBD activates Tau protein kinases, and elucidating their relationship with abnormal Tau phosphorylation are crucial for future researches on HIBD related treatments. This review aims to focus on the mechanisms of the role of Tau phosphorylation in HIBD, and the potential relationships between Tau protein kinases and Tau phosphorylation, providing a basis for intervention and treatment of HIBD.
Humans
;
tau Proteins/physiology*
;
Phosphorylation
;
Hypoxia-Ischemia, Brain/physiopathology*
;
Animals
;
Oxidative Stress
4.Construction and in vitro pharmacodynamic evaluation of a polydopamine nanodelivery system co-loaded with gambogic acid, Fe(Ⅲ), and glucose oxidase.
Jian LIU ; Zhi-Huai CHEN ; Xin-Qi WEI ; Ling-Ting LIN ; Wei XU
China Journal of Chinese Materia Medica 2025;50(1):111-119
Gambogic acid(GA), a caged xanthone derivative isolated from Garcinia Hanburyi, exhibits significant antitumor activity and has advanced to phase Ⅱ clinical trials for lung cancer treatment in China. However, the clinical application of GA is severely hindered by its inherent limitations, including poor water solubility, a lack of targeting specificity, and significant side effects. Novel drug delivery systems not only overcome these pharmacological deficiencies but also integrate multiple therapeutic modalities, transcending the limitations of monotherapeutic approaches. In this study, we designed a multifunctional nanodelivery platform(PDA-PEG-Fe(Ⅲ)-GOx-GA) using polydopamine(PDA) as the core material. After the modification of PDA with polyethylene glycol(PEG), Fe(Ⅲ) ions, glucose oxidase(GOx), and GA were sequentially loaded via coordination interactions, electrostatic adsorption, and hydrophobic interactions, respectively. This system demonstrated excellent physiological stability, hemocompatibility, and photothermal conversion efficiency. Notably, under dual stimuli of pH and near-infrared(NIR) irradiation, PDA-PEG-Fe(Ⅲ)-GOx-GA achieved controlled GA release, with a cumulative release rate of 58.3% at 12 h, 3.6-fold higher than that under non-stimulated conditions. Under NIR irradiation, the synergistic effects of PDA-mediated photothermal therapy, Fe(Ⅲ)-induced chemodynamic therapy, GOx-generated starvation therapy, and GA-mediated chemotherapy resulted in effective inhibition of tumor cell proliferation(91.5% inhibition rate) and induction of apoptosis(83.3% apoptosis rate). This multi-modal approach realized a comprehensive treatment strategy for lung cancer, integrating various therapeutic pathways.
Xanthones/pharmacology*
;
Humans
;
Polymers/chemistry*
;
Glucose Oxidase/pharmacology*
;
Indoles/chemistry*
;
Drug Delivery Systems
;
Drug Carriers/chemistry*
;
Nanoparticles/chemistry*
;
Cell Line, Tumor
5.Medication rules and mechanisms of treating chronic renal failure by Jinling medical school based on data mining, network pharmacology, and experimental validation.
Jin-Long WANG ; Wei WU ; Yi-Gang WAN ; Qi-Jun FANG ; Yu WANG ; Ya-Jing LI ; Fee-Lan CHONG ; Sen-Lin MU ; Chu-Bo HUANG ; Huang HUANG
China Journal of Chinese Materia Medica 2025;50(6):1637-1649
This study aims to explore the medication rules and mechanisms of treating chronic renal failure(CRF) by Jinling medical school based on data mining, network pharmacology, and experimental validation systematically and deeply. Firstly, the study selected the papers published by the inherited clinicians in Jinling medical school in Chinese journals using the subject headings named "traditional Chinese medicine(TCM) + chronic renal failure", "TCM + chronic renal inefficiency", or "TCM + consumptive disease" in China National Knowledge Infrastructure, Wanfang, and VIP Chinese Science and Technology Periodical Database and screened TCM formulas for treating CRF according to inclusion and exclusion criteria. The study analyzed the frequency of use of single TCM and the four properties, five tastes, channel tropism, and efficacy of TCM used with high frequency and performed association rule and clustering analysis, respectively. As a result, a total of 215 TCM formulas and 235 different single TCM were screened, respectively. The TCM used with high frequency included Astragali Radix, Rhei Radix et Rhizoma, Salviae Miltiorrhizae Radix et Rhizoma, Poria, and Atractylodis Macrocephalae Rhizoma(top 5). The single TCM characterized by "cold properties, sweet flavor, and restoring spleen channel" and the TCM with the efficacy of tonifying deficiency had the highest frequency of use, respectively. Then, the TCM with the rules of "blood-activating and stasis-removing" and "diuretic and dampness-penetrating" appeared. In addition, the core combination of TCM [(Hexin Formula, HXF)] included "Astragali Radix, Rhei Radix et Rhizoma, Poria, Salviae Miltiorrhizae Radix, and Angelicae Sinensis Radix". The network pharmacology analysis showed that HXF had 91 active compounds and 250 corresponding protein targets including prostaglandin-endoperoxide synthase 2(PTGS2), PTGS1, sodium voltage-gated channel alpha subunit 5(SCN5A), cholinergic receptor muscarinic 1(CHRM1), and heat shock protein 90 alpha family class A member 1(HSP90AA1)(top 5). Gene Ontology(GO) function analysis revealed that the core targets of HXF predominantly affected biological processes, cellular components, and molecular functions such as positive regulation of transcription by ribonucleic acid polymerase Ⅱ and DNA template transcription, formation of cytosol, nucleus, and plasma membrane, and identical protein binding and enzyme binding. Kyoto Encyclopedia of Genes and Genomes(KEGG) analysis revealed that CRF-related genes were involved in a variety of signaling pathways and cellular metabolic pathways, primarily involving "phosphatidylinositol 3-kinase(PI3K)-protein kinase B(Akt) pathway" and "advanced glycation end products-receptor for advanced glycation end products". Molecular docking results showed that the active components in HXF such as isomucronulatol 7-O-glucoside, betulinic acid, sitosterol, and przewaquinone B might be crucial in the treatment of CRF. Finally, a modified rat model with renal failure induced by adenine was used, and the in vivo experimental confirmation was performed based on the above-mentioned predictions. The results verify that HXF can regulate mitochondrial autophagy in the kidneys and the PI3K-Akt-mammalian target of rapamycin(mTOR) signaling pathway activation at upstream, so as to alleviate renal tubulointerstitial fibrosis and then delay the progression of CRF.
Data Mining
;
Drugs, Chinese Herbal/chemistry*
;
Network Pharmacology
;
Humans
;
Kidney Failure, Chronic/metabolism*
;
Medicine, Chinese Traditional
;
China
6.Tanreqing Capsules protect lung and gut of mice infected with influenza virus via "lung-gut axis".
Nai-Fan DUAN ; Yuan-Yuan YU ; Yu-Rong HE ; Feng CHEN ; Lin-Qiong ZHOU ; Ya-Lan LI ; Shi-Qi SUN ; Yan XUE ; Xing ZHANG ; Gui-Hua XU ; Yue-Juan ZHENG ; Wei ZHANG
China Journal of Chinese Materia Medica 2025;50(8):2270-2281
This study aims to explore the mechanism of lung and gut protection by Tanreqing Capsules on the mice infected with influenza virus based on "the lung-gut axis". A total of 110 C57BL/6J mice were randomized into control group, model group, oseltamivir group, and low-and high-dose Tanreqing Capsules groups. Ten mice in each group underwent body weight protection experiments, and the remaining 12 mice underwent experiments for mechanism exploration. Mice were infected with influenza virus A/Puerto Rico/08/1934(PR8) via nasal inhalation for the modeling. The lung tissue was collected on day 3 after gavage, and the lung tissue, colon tissue, and feces were collected on day 7 after gavage for subsequent testing. The results showed that Tanreqing Capsules alleviated the body weight reduction and increased the survival rate caused by PR8 infection. Compared with model group, Tanreqing Capsules can alleviate the lung injury by reducing the lung index, alleviating inflammation and edema in the lung tissue, down-regulating viral gene expression at the late stage of infection, reducing the percentage of neutrophils, and increasing the percentage of T cells. Tanreqing Capsules relieved the gut injury by restoring the colon length, increasing intestinal lumen mucin secretion, alleviating intestinal inflammation, and reducing goblet cell destruction. The gut microbiota analysis showed that Tanreqing Capsules increased species diversity compared with model group. At the phylum level, Tanreqing Capsules significantly increased the abundance of Firmicutes and Actinobacteria, while reducing the abundance of Bacteroidota and Proteobacteria to maintain gut microbiota balance. At the genus level, Tanreqing Capsules significantly increased the abundance of unclassified_f_Lachnospiraceae while reducing the abundance of Bacteroides, Eubacterium, and Phocaeicola to maintain gut microbiota balance. In conclusion, Tanreqing Capsules can alleviate mouse lung and gut injury caused by influenza virus infection and restore the balance of gut microbiota. Treating influenza from the lung and gut can provide new ideas for clinical practice.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Lung/metabolism*
;
Mice, Inbred C57BL
;
Capsules
;
Orthomyxoviridae Infections/virology*
;
Gastrointestinal Microbiome/drug effects*
;
Male
;
Humans
;
Female
;
Influenza A virus/physiology*
;
Influenza, Human/virology*
7.Transcriptome analysis and catechin synthesis genes in different organs of Spatholobus suberectus.
Wei-Qi QIN ; Quan LIN ; Ying LIANG ; Fan WEI ; Gui-Li WEI ; Qi GAO ; Shuang-Shuang QIN
China Journal of Chinese Materia Medica 2025;50(12):3297-3306
To study the differences in transcript levels among different organs of Spatholobus suberectus and to explore the genes encoding enzymes related to the catechin biosynthesis pathway, this study utilized the genome and full-length transcriptome data of S. suberectus as references. Transcriptome sequencing and bioinformatics analysis were performed on five different organs of S. suberectus-roots, stems, leaves, flowers, and fruits-using the Illumina NovaSeq 6000 platform. A total of 115.28 Gb of clean data were obtained, with GC content values ranging from 45.19% to 47.54%, Q20 bases at 94.17% and above, and an overall comparison rate with the reference genome around 90%. In comparisons between the stem and root, stem and leaf, stem and flower, and stem and fruit, 10 666, 9 674, 9 320, and 5 896 differentially expressed genes(DEGs) were identified, respectively. The lowest number of DEGs was found in the stem and root comparison group. KEGG enrichment analysis revealed that the DEGs were mainly concentrated in the pathways of phytohormone signaling, phenylalanine biosynthesis, etc. A total of 39 genes were annotated in the catechin biosynthesis pathway, with at least one highly expressed gene found in all organs. Among these, PAL1, PAL2, C4H1, C4H3, 4CL1, 4CL2, and DFR2 showed high expression in the stems, suggesting that they may play important roles in the biosynthesis of flavonoids in S. suberectus. This study aims to provide important information for the in-depth exploration of the regulation of catechin biosynthesis in S. suberectus through transcriptome analysis of its different organs and to provide a reference for the further realization of S. suberectus varietal improvement and molecular breeding.
Catechin/biosynthesis*
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
;
Plant Proteins/metabolism*
;
Fabaceae/metabolism*
;
Transcriptome
;
Flowers/metabolism*
;
Plant Stems/metabolism*
;
Plant Leaves/metabolism*
;
Plant Roots/metabolism*
;
Fruit/metabolism*
8.Effects of combined use of active ingredients in Buyang Huanwu Decoction on oxygen-glucose deprivation/reglucose-reoxygenation-induced inflammation and oxidative stress of BV2 cells.
Tian-Qing XIA ; Ying CHEN ; Jian-Lin HUA ; Qin SU ; Cun-Yan DAN ; Meng-Wei RONG ; Shi-Ning GE ; Hong GUO ; Bao-Guo XIAO ; Jie-Zhong YU ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(14):3835-3846
This study aims to explore the effects and action mechanisms of the active ingredients in Buyang Huanwu Decoction(BYHWD), namely tetramethylpyrazine(TMP) and hydroxy-safflor yellow A(HSYA), on oxygen-glucose deprivation/reglucose-reoxygenation(OGD/R)-induced inflammation and oxidative stress of microglia(MG). Network pharmacology was used to screen the effective monomer ingredients of BYHWD and determine the safe concentration range for each component. Inflammation and oxidative stress models were established to further screen the best ingredient combination and optimal concentration ratio with the most effective anti-inflammatory and antioxidant effects. OGD/R BV2 cell models were constructed, and BV2 cells in the logarithmic growth phase were divided into a normal group, a model group, an HSYA group, a TMP group, and an HSYA + TMP group. Enzyme-linked immunosorbent assay(ELISA) was used to detect the levels of inflammatory cytokines such as interleukin-1β(IL-1β), tumor necrosis factor-α(TNF-α), and interleukin-6(IL-6). Oxidative stress markers, including superoxide dismutase(SOD), nitric oxide(NO), and malondialdehyde(MDA), were also measured. Western blot was used to analyze the protein expression of both inflammation-related pathway [Toll-like receptor 4(TLR4)/nuclear factor-kappa B(NF-κB)] and oxidative stress-related pathway [nuclear factor erythroid 2-related factor 2(Nrf2)/heme oxygenase-1(HO-1)]. Immunofluorescence was used to assess the expression of proteins such as inducible nitric oxide synthase(iNOS) and arginase-1(Arg-1). The most effective ingredients for anti-inflammatory and antioxidant effects in BYHWD were TMP and HSYA. Compared to the normal group, the model group showed significantly increased levels of IL-1β, TNF-α, IL-6, NO, and MDA, along with significantly higher protein expression of NF-κB, TLR4, Nrf2, and HO-1 and significantly lower SOD levels. The differences between the two groups were statistically significant. Compared to the model group, both the HSYA group and the TMP group showed significantly reduced levels of IL-1β, TNF-α, IL-6, NO, and MDA, lower expression of NF-κB and TLR4 proteins, higher levels of SOD, and significantly increased protein expression of Nrf2 and HO-1. Additionally, the expression of the M1-type MG marker iNOS was significantly reduced, while the expression of the M2-type MG marker Arg-1 was significantly increased. The results of the HSYA group and the TMP group had statistically significant differences from those of the model group. Compared to the HSYA group and the TMP group, the HSYA + TMP group showed further significant reductions in IL-1β, TNF-α, IL-6, NO, and MDA levels, along with significant reductions in NF-κB and TLR4 protein expression, an increase in SOD levels, and elevated Nrf2 and HO-1 protein expression. Additionally, the expression of the M1-type MG marker iNOS was reduced, while the M2-type MG marker Arg-1 expression increased significantly in the HSYA + TMP group compared to the TMP or HSYA group. The differences in the results were statistically significant between the HSYA + TMP group and the TMP or HSYA group. The findings indicated that the combined use of HSYA and TMP, the active ingredients of BYHWD, can effectively inhibit OGD/R-induced inflammation and oxidative stress of MG, showing superior effects compared to the individual use of either component.
Oxidative Stress/drug effects*
;
Drugs, Chinese Herbal/pharmacology*
;
Animals
;
Mice
;
Glucose/metabolism*
;
Cell Line
;
Inflammation/genetics*
;
Oxygen/metabolism*
;
Pyrazines/pharmacology*
;
Microglia/metabolism*
;
NF-E2-Related Factor 2/immunology*
;
NF-kappa B/immunology*
;
Toll-Like Receptor 4/immunology*
;
Anti-Inflammatory Agents/pharmacology*
;
Humans
9.Immune function regulation and tumor-suppressive effects of Shenqi Erpi Granules on S_(180) tumor-bearing mice.
Xiong-Wei ZHANG ; Yan-Ning JIANG ; Hu QI ; Bin LI ; Yuan-Lin GAO ; Ze-Yang ZHANG ; Jian-An FENG ; Xi LI ; Nan ZENG
China Journal of Chinese Materia Medica 2025;50(13):3753-3764
This study aims to establish the S_(180) tumor-bearing mice model, and to investigate the influence of Shenqi Erpi Granules(SQEPG) on immune function, as well as the drug's tumor-suppressive effect and mechanism. SPF grade KM mice(half male and half female) were randomly divided into 6 groups: a control group, a model group, a cyclophosphamide group(50 mg·kg~(-1)), as well as SQEPG groups in low-, medium-, and high-dose(5.25, 10.5, 21 g·kg~(-1)). The control group and the model group were given distilled water, and the other 4 groups were given the corresponding drugs by gavage. The administration continued for 10 days before the mice were sacrificed. The antitumor and immune regulation effects of SQEPG were evaluated. The effect of SQEPG on delayed type hypersensitivity reaction(DTH), carbon clearance index, and serum hemolysin antibody level was observed to reflect the effect on the immune function of tumor-bearing mice. Tumor weight was recorded to calculate the tumor suppression rate and the immune organ index. Hematoxylin-eosin(HE) staining was used to detect morphological changes in tumor tissues. Flow cytometry was employed to detect the percentage of CD4~+ and CD8~+ T-cells in the spleen tissues and the tumor tissue apoptosis levels. Immunohistochemistry was conducted to detect the KI67 protein expression level of tumor tissues. ELISA resorted to the detection of the following expression levels in tumor tissues: tumor necrosis factor-α(TNF-α), interleukin-2(IL-2), interferon-γ(IFN-γ). Western blot was performed to detect the expression levels of caspase-3, B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), cyclin-dependent kinases 4(CDK4), G_1/S-specific cyclin D1(cyclin D1), and vascular endothelial growth factor A(VEGFA). The results showed that, compared with the model group, the SQEPG could increase the swelling of the auricle of the tumor-bearing mice; significantly increase the phagocytic index of carbon granule contour(P<0.05 or P<0.01), and the middle dose of SQEPG could significantly increase the antibody level of hemolysin(P<0.05); different doses of SQEPG significantly inhibit the growth of the tumor, and decrease the mass of the tumor tissues(P<0.05 or P<0.01); the low dose of SQEPG significantly decreased spleen index(P<0.05), low and high doses of SQEPG increased thymus index, while medium doses of SQEPG decreased thymus index. High doses of SQEPG significantly elevated the levels of CD4~+ and CD8~+ T-cells in the spleens of the homozygous mice(P<0.01 or P<0.001), and increased the apoptosis rate of the cells of the tumor tissues(P<0.05); Meanwhile, high-dose SQEPG elevated the levels of immunity factors such as IL-2, IFN-γ and TNF-α in the serum of tumor-bearing mice(P<0.01); medium-and high-dose SQEPG significantly lowered the rate of positive expression of KI67 protein in tumor tissues(P<0.01). Compared with the model group, high-dose SQEPG significantly up-regulated the expression of caspase-3 and Bax proteins in tumor tissues(P<0.05), and significantly down-regulated the expression of CDK4, cyclin D1, and VEGFA proteins(P<0.05 or P<0.01). In conclusion, SQEPG has the effect of improving immune function and inhibiting tumor growth in tumor-bearing mice. Its mechanism of tumor-suppressive effects may be related to apoptosis promotion, cell cycle progression block, and tumor cell proliferation inhibition.
Animals
;
Mice
;
Drugs, Chinese Herbal/pharmacology*
;
Male
;
Female
;
Apoptosis/drug effects*
;
Sarcoma 180/genetics*
;
Humans
10.Regulatory effects of Dangua Humai Oral Liquid on gut microbiota and mucosal barrier in mice with glucolipid metabolism disorder.
Zhuang HAN ; Lin-Xi JIN ; Zhi-Ta WANG ; Liu-Qing YANG ; Liang LI ; Yi RUAN ; Qi-Wei CHEN ; Shu-Hong YAO ; Xian-Pei HENG
China Journal of Chinese Materia Medica 2025;50(15):4315-4324
The gut microbiota regulates intestinal nutrient absorption, participates in modulating host glucolipid metabolism, and contributes to ameliorating glucolipid metabolism disorder. Dysbiosis of the gut microbiota can compromise the integrity of the intestinal mucosal barrier, induce inflammatory responses, and exacerbate insulin resistance and abnormal lipid metabolism in the host. Dangua Humai Oral Liquid, a hospital-developed formulation for regulating glucolipid metabolism, has been granted a national invention patent and demonstrates significant clinical efficacy. This study aimed to investigate the effects of Dangua Humai Oral Liquid on gut microbiota and the intestinal mucosal barrier in a mouse model with glucolipid metabolism disorder. A glucolipid metabolism disorder model was established by feeding mice a high-glucose and high-fat diet. The mice were divided into a normal group, a model group, and a treatment group, with eight mice in each group. The treatment group received a daily gavage of Dangua Humai Oral Liquid(20 g·kg~(-1)), while the normal group and model group were given an equivalent volume of sterile water. After 15 weeks of intervention, glucolipid metabolism, intestinal mucosal barrier function, and inflammatory responses were evaluated. Metagenomics and untargeted metabolomics were employed to analyze changes in gut microbiota and associated metabolic pathways. Significant differences were observed between the indicators of the normal group and the model group. Compared with the model group, the treatment group exhibited marked improvements in glucolipid metabolism disorder, alleviated pathological damage in the liver and small intestine tissue, elevated expression of recombinant claudin 1(CLDN1), occluding(OCLN), and zonula occludens 1(ZO-1) in the small intestine tissue, and reduced serum levels of inflammatory factors lipopolysaccharides(LPS), lipopolysaccharide-binding protein(LBP), interleukin-6(IL-6), and tumor necrosis factor-α(TNF-α). At the phylum level, the relative abundance of Bacteroidota decreased, while that of Firmicutes increased. Lipid-related metabolic pathways were significantly altered. In conclusion, based on the successful establishment of the mouse model of glucolipid metabolism disorder, this study confirmed that Dangua Humai Oral Liquid effectively modulates gut microbiota and mucosal barrier function, reduces serum inflammatory factor levels, and regulates lipid-related metabolic pathways, thereby ameliorating glucolipid metabolism disorder.
Animals
;
Gastrointestinal Microbiome/drug effects*
;
Mice
;
Intestinal Mucosa/microbiology*
;
Male
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice, Inbred C57BL
;
Humans
;
Glycolipids/metabolism*
;
Lipid Metabolism/drug effects*
;
Administration, Oral
;
Disease Models, Animal

Result Analysis
Print
Save
E-mail