1.Clinical and Radiological Outcomes of Transarterial Embolization for Adhesive Capsulitis
Keng-Wei LIANG ; Hsuan Yin LIN ; Kai-Lan HSU ; Fa-Chuan KUAN ; Chia-Yu GEAN ; Chien-Kuo WANG ; Wei-Ren SU ; Bow WANG
Korean Journal of Radiology 2025;26(3):230-238
Objective:
To assess the effect of transarterial embolization (TAE) for adhesive capsulitis (AC) by evaluating clinical outcomes and changes in inflammation using magnetic resonance imaging (MRI).
Materials and Methods:
Patients who had undergone TAE between August 2020 and August 2023 for AC refractory to conservative treatments without any invasive procedures for more than 3 months, and had undergone baseline and 3-month post-AC follow-up contrast-enhanced MRI evaluations, were included. A suspension mixture of 500 mg imipenem/cilastatin in 10 mL of iodinated contrast agent was used for TAE. MRI results were analyzed to assess periarticular capsule/ligament inflammation. Clinical assessments included pain scores using the numeric rating scale (NRS) and functional scores using the quick disabilities of the arm, shoulder, and hand (Quick DASH) questionnaire.
Results:
Twenty-five patients (female:male, 14:11; age, 54.9 ± 7.1 years) were included. Significant reductions in average NRS pain scores as well as improvements in Quick DASH scores and range of motion, including anterior flexion and abduction, were observed at 1, 3, and 6 months after TAE (all P < 0.001). MRI analyses revealed that TAE significantly decreased the grades of axillary recess capsule enhancement, rotator interval (RI) capsule T2 signal intensity, and RI capsule enhancement (all P ≤ 0.004).
Conclusion
TAE may be an effective and safe therapeutic approach for AC refractory to conservative treatments, alleviating pain and supporting functional recovery. The observed MRI findings suggest that the effectiveness of TAE for AC may be attributed to the reduction of inflammation and the elimination of angiogenesis.
2.Clinical and Radiological Outcomes of Transarterial Embolization for Adhesive Capsulitis
Keng-Wei LIANG ; Hsuan Yin LIN ; Kai-Lan HSU ; Fa-Chuan KUAN ; Chia-Yu GEAN ; Chien-Kuo WANG ; Wei-Ren SU ; Bow WANG
Korean Journal of Radiology 2025;26(3):230-238
Objective:
To assess the effect of transarterial embolization (TAE) for adhesive capsulitis (AC) by evaluating clinical outcomes and changes in inflammation using magnetic resonance imaging (MRI).
Materials and Methods:
Patients who had undergone TAE between August 2020 and August 2023 for AC refractory to conservative treatments without any invasive procedures for more than 3 months, and had undergone baseline and 3-month post-AC follow-up contrast-enhanced MRI evaluations, were included. A suspension mixture of 500 mg imipenem/cilastatin in 10 mL of iodinated contrast agent was used for TAE. MRI results were analyzed to assess periarticular capsule/ligament inflammation. Clinical assessments included pain scores using the numeric rating scale (NRS) and functional scores using the quick disabilities of the arm, shoulder, and hand (Quick DASH) questionnaire.
Results:
Twenty-five patients (female:male, 14:11; age, 54.9 ± 7.1 years) were included. Significant reductions in average NRS pain scores as well as improvements in Quick DASH scores and range of motion, including anterior flexion and abduction, were observed at 1, 3, and 6 months after TAE (all P < 0.001). MRI analyses revealed that TAE significantly decreased the grades of axillary recess capsule enhancement, rotator interval (RI) capsule T2 signal intensity, and RI capsule enhancement (all P ≤ 0.004).
Conclusion
TAE may be an effective and safe therapeutic approach for AC refractory to conservative treatments, alleviating pain and supporting functional recovery. The observed MRI findings suggest that the effectiveness of TAE for AC may be attributed to the reduction of inflammation and the elimination of angiogenesis.
3.Clinical and Radiological Outcomes of Transarterial Embolization for Adhesive Capsulitis
Keng-Wei LIANG ; Hsuan Yin LIN ; Kai-Lan HSU ; Fa-Chuan KUAN ; Chia-Yu GEAN ; Chien-Kuo WANG ; Wei-Ren SU ; Bow WANG
Korean Journal of Radiology 2025;26(3):230-238
Objective:
To assess the effect of transarterial embolization (TAE) for adhesive capsulitis (AC) by evaluating clinical outcomes and changes in inflammation using magnetic resonance imaging (MRI).
Materials and Methods:
Patients who had undergone TAE between August 2020 and August 2023 for AC refractory to conservative treatments without any invasive procedures for more than 3 months, and had undergone baseline and 3-month post-AC follow-up contrast-enhanced MRI evaluations, were included. A suspension mixture of 500 mg imipenem/cilastatin in 10 mL of iodinated contrast agent was used for TAE. MRI results were analyzed to assess periarticular capsule/ligament inflammation. Clinical assessments included pain scores using the numeric rating scale (NRS) and functional scores using the quick disabilities of the arm, shoulder, and hand (Quick DASH) questionnaire.
Results:
Twenty-five patients (female:male, 14:11; age, 54.9 ± 7.1 years) were included. Significant reductions in average NRS pain scores as well as improvements in Quick DASH scores and range of motion, including anterior flexion and abduction, were observed at 1, 3, and 6 months after TAE (all P < 0.001). MRI analyses revealed that TAE significantly decreased the grades of axillary recess capsule enhancement, rotator interval (RI) capsule T2 signal intensity, and RI capsule enhancement (all P ≤ 0.004).
Conclusion
TAE may be an effective and safe therapeutic approach for AC refractory to conservative treatments, alleviating pain and supporting functional recovery. The observed MRI findings suggest that the effectiveness of TAE for AC may be attributed to the reduction of inflammation and the elimination of angiogenesis.
4.Clinical and Radiological Outcomes of Transarterial Embolization for Adhesive Capsulitis
Keng-Wei LIANG ; Hsuan Yin LIN ; Kai-Lan HSU ; Fa-Chuan KUAN ; Chia-Yu GEAN ; Chien-Kuo WANG ; Wei-Ren SU ; Bow WANG
Korean Journal of Radiology 2025;26(3):230-238
Objective:
To assess the effect of transarterial embolization (TAE) for adhesive capsulitis (AC) by evaluating clinical outcomes and changes in inflammation using magnetic resonance imaging (MRI).
Materials and Methods:
Patients who had undergone TAE between August 2020 and August 2023 for AC refractory to conservative treatments without any invasive procedures for more than 3 months, and had undergone baseline and 3-month post-AC follow-up contrast-enhanced MRI evaluations, were included. A suspension mixture of 500 mg imipenem/cilastatin in 10 mL of iodinated contrast agent was used for TAE. MRI results were analyzed to assess periarticular capsule/ligament inflammation. Clinical assessments included pain scores using the numeric rating scale (NRS) and functional scores using the quick disabilities of the arm, shoulder, and hand (Quick DASH) questionnaire.
Results:
Twenty-five patients (female:male, 14:11; age, 54.9 ± 7.1 years) were included. Significant reductions in average NRS pain scores as well as improvements in Quick DASH scores and range of motion, including anterior flexion and abduction, were observed at 1, 3, and 6 months after TAE (all P < 0.001). MRI analyses revealed that TAE significantly decreased the grades of axillary recess capsule enhancement, rotator interval (RI) capsule T2 signal intensity, and RI capsule enhancement (all P ≤ 0.004).
Conclusion
TAE may be an effective and safe therapeutic approach for AC refractory to conservative treatments, alleviating pain and supporting functional recovery. The observed MRI findings suggest that the effectiveness of TAE for AC may be attributed to the reduction of inflammation and the elimination of angiogenesis.
5.Clinical and Radiological Outcomes of Transarterial Embolization for Adhesive Capsulitis
Keng-Wei LIANG ; Hsuan Yin LIN ; Kai-Lan HSU ; Fa-Chuan KUAN ; Chia-Yu GEAN ; Chien-Kuo WANG ; Wei-Ren SU ; Bow WANG
Korean Journal of Radiology 2025;26(3):230-238
Objective:
To assess the effect of transarterial embolization (TAE) for adhesive capsulitis (AC) by evaluating clinical outcomes and changes in inflammation using magnetic resonance imaging (MRI).
Materials and Methods:
Patients who had undergone TAE between August 2020 and August 2023 for AC refractory to conservative treatments without any invasive procedures for more than 3 months, and had undergone baseline and 3-month post-AC follow-up contrast-enhanced MRI evaluations, were included. A suspension mixture of 500 mg imipenem/cilastatin in 10 mL of iodinated contrast agent was used for TAE. MRI results were analyzed to assess periarticular capsule/ligament inflammation. Clinical assessments included pain scores using the numeric rating scale (NRS) and functional scores using the quick disabilities of the arm, shoulder, and hand (Quick DASH) questionnaire.
Results:
Twenty-five patients (female:male, 14:11; age, 54.9 ± 7.1 years) were included. Significant reductions in average NRS pain scores as well as improvements in Quick DASH scores and range of motion, including anterior flexion and abduction, were observed at 1, 3, and 6 months after TAE (all P < 0.001). MRI analyses revealed that TAE significantly decreased the grades of axillary recess capsule enhancement, rotator interval (RI) capsule T2 signal intensity, and RI capsule enhancement (all P ≤ 0.004).
Conclusion
TAE may be an effective and safe therapeutic approach for AC refractory to conservative treatments, alleviating pain and supporting functional recovery. The observed MRI findings suggest that the effectiveness of TAE for AC may be attributed to the reduction of inflammation and the elimination of angiogenesis.
6.Neuroplasticity Mechanisms of Exercise-induced Brain Protection
Li-Juan HOU ; Lan-Qun MAO ; Wei CHEN ; Ke LI ; Xu-Dong ZHAO ; Yin-Hao WANG ; Zi-Zheng YANG ; Tian-He WEI
Progress in Biochemistry and Biophysics 2025;52(6):1435-1452
Neuroscience is a significant frontier discipline within the natural sciences and has become an important interdisciplinary frontier scientific field. Brain is one of the most complex organs in the human body, and its structural and functional analysis is considered the “ultimate frontier” of human self-awareness and exploration of nature. Driven by the strategic layout of “China Brain Project”, Chinese scientists have conducted systematic research focusing on “understanding the brain, simulating the brain, and protecting the brain”. They have made breakthrough progress in areas such as the principles of brain cognition, mechanisms and interventions for brain diseases, brain-like computation, and applications of brain-machine intelligence technology, aiming to enhance brain health through biomedical technology and improve the quality of human life. Due to limited understanding and comprehension of neuroscience, there are still many important unresolved issues in the field of neuroscience, resulting in a lack of effective measures to prevent and protect brain health. Therefore, in addition to actively developing new generation drugs, exploring non pharmacological treatment strategies with better health benefits and higher safety is particularly important. Epidemiological data shows that, exercise is not only an indispensable part of daily life but also an important non-pharmacological approach for protecting brain health and preventing neurodegenerative diseases, forming an emerging research field known as motor neuroscience. Basic research in motor neuroscience primarily focuses on analyzing the dynamic coding mechanisms of neural circuits involved in motor control, breakthroughs in motor neuroscience research depend on the construction of dynamic monitoring systems across temporal and spatial scales. Therefore, high spatiotemporal resolution detection of movement processes and movement-induced changes in brain structure and neural activity signals is an important technical foundation for conducting motor neuroscience research and has developed a set of tools based on traditional neuroscience methods combined with novel motor behavior decoding technologies, providing an innovative technical platform for motor neuroscience research. The protective effect of exercise in neurodegenerative diseases provides broad application prospects for its clinical translation. Applied research in motor neuroscience centers on deciphering the regulatory networks of neuroprotective molecules mediated by exercise. From the perspectives of exercise promoting neurogenesis and regeneration, enhancing synaptic plasticity, modulating neuronal functional activity, and remodeling the molecular homeostasis of the neuronal microenvironment, it aims to improve cognitive function and reduce the incidence of Parkinson’s disease and Alzheimer’s disease. This has also advanced research into the molecular regulatory networks mediating exercise-induced neuroprotection and facilitated the clinical application and promotion of exercise rehabilitation strategies. Multidimensional analysis of exercise-regulated neural plasticity is the theoretical basis for elucidating the brain-protective mechanisms mediated by exercise and developing intervention strategies for neurological diseases. Thus,real-time analysis of different neural signals during active exercise is needed to study the health effects of exercise throughout the entire life cycle and enhance lifelong sports awareness. Therefore, this article will systematically summarize the innovative technological developments in motor neuroscience research, review the mechanisms of neural plasticity that exercise utilizes to protect the brain, and explore the role of exercise in the prevention and treatment of major neurodegenerative diseases. This aims to provide new ideas for future theoretical innovations and clinical applications in the field of exercise-induced brain protection.
7.Effect and safety of pulsatile GnRH therapy for male congenital hypogonadotropic hypogonadism
Yong-Hua NIU ; Hao XU ; Yin-Wei CHEN ; Ru-Zhu LAN ; Tao WANG ; SHAO-Gang WANG ; Ji-Hong LIU
National Journal of Andrology 2024;30(5):404-409
Objective:To investigate the efficiency and safety of the pulsatile GnRH therapy in the treatment of male congeni-tal hypogonadotropic hypogonadism(CHH).Methods:We retrospectively analyzed the clinical data on 45 CHH males treated by pulsatile GnRH therapy in our hospital from January 2013 to March 2023.We treated the patients with gonadorelin at 7-15 μg,one pulse/90 min,and followed them up every month in the first 3 months and then every 3 to 6 months after treatment,for an average of 19.1±4.3 months,during which we recorded the height,body weight,penile length,testis volume,Tanner stages,levels of FSH,LH and T,semen parameters and adverse reactions of the patients,followed by comparison of the data obtained with the baseline.Results:The levels of FSH,LH and T of the patients were dramatically elevated after treatment(P<0.01).The T level of the6 ca-ses of cryptorchidism,however,failed to reach the normal value within 18.2±8.6 months of follow-up.Significant improvement was seen in the external genitalia and secondary sexual characteristics of all the patients,and spermatogenesis was observed in the semen in 33 cases(73.3% ),with a mean sperm concentration of(18.2±6.2)106/ml,sperm progressive motility of(19.7±6.5)%,and semen volume of(1.8±0.6)ml.Eight of the cases achieved natural fertility,and another 3 achieved childbirth by assisted re-productive technology.As for adverse events,gynecomastia was observed in 8,subcutaneous induration in 6,and allergic reaction to therapeutic agent in 3 cases.Conclusion:Pulsatile GnRH therapy is an effective and safe strategy for male CHH.However,clini-cians should choose appropriate approaches to different individual cases.
8.Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients (version 2024)
Yao LU ; Yang LI ; Leiying ZHANG ; Hao TANG ; Huidan JING ; Yaoli WANG ; Xiangzhi JIA ; Li BA ; Maohong BIAN ; Dan CAI ; Hui CAI ; Xiaohong CAI ; Zhanshan ZHA ; Bingyu CHEN ; Daqing CHEN ; Feng CHEN ; Guoan CHEN ; Haiming CHEN ; Jing CHEN ; Min CHEN ; Qing CHEN ; Shu CHEN ; Xi CHEN ; Jinfeng CHENG ; Xiaoling CHU ; Hongwang CUI ; Xin CUI ; Zhen DA ; Ying DAI ; Surong DENG ; Weiqun DONG ; Weimin FAN ; Ke FENG ; Danhui FU ; Yongshui FU ; Qi FU ; Xuemei FU ; Jia GAN ; Xinyu GAN ; Wei GAO ; Huaizheng GONG ; Rong GUI ; Geng GUO ; Ning HAN ; Yiwen HAO ; Wubing HE ; Qiang HONG ; Ruiqin HOU ; Wei HOU ; Jie HU ; Peiyang HU ; Xi HU ; Xiaoyu HU ; Guangbin HUANG ; Jie HUANG ; Xiangyan HUANG ; Yuanshuai HUANG ; Shouyong HUN ; Xuebing JIANG ; Ping JIN ; Dong LAI ; Aiping LE ; Hongmei LI ; Bijuan LI ; Cuiying LI ; Daihong LI ; Haihong LI ; He LI ; Hui LI ; Jianping LI ; Ning LI ; Xiying LI ; Xiangmin LI ; Xiaofei LI ; Xiaojuan LI ; Zhiqiang LI ; Zhongjun LI ; Zunyan LI ; Huaqin LIANG ; Xiaohua LIANG ; Dongfa LIAO ; Qun LIAO ; Yan LIAO ; Jiajin LIN ; Chunxia LIU ; Fenghua LIU ; Peixian LIU ; Tiemei LIU ; Xiaoxin LIU ; Zhiwei LIU ; Zhongdi LIU ; Hua LU ; Jianfeng LUAN ; Jianjun LUO ; Qun LUO ; Dingfeng LYU ; Qi LYU ; Xianping LYU ; Aijun MA ; Liqiang MA ; Shuxuan MA ; Xainjun MA ; Xiaogang MA ; Xiaoli MA ; Guoqing MAO ; Shijie MU ; Shaolin NIE ; Shujuan OUYANG ; Xilin OUYANG ; Chunqiu PAN ; Jian PAN ; Xiaohua PAN ; Lei PENG ; Tao PENG ; Baohua QIAN ; Shu QIAO ; Li QIN ; Ying REN ; Zhaoqi REN ; Ruiming RONG ; Changshan SU ; Mingwei SUN ; Wenwu SUN ; Zhenwei SUN ; Haiping TANG ; Xiaofeng TANG ; Changjiu TANG ; Cuihua TAO ; Zhibin TIAN ; Juan WANG ; Baoyan WANG ; Chunyan WANG ; Gefei WANG ; Haiyan WANG ; Hongjie WANG ; Peng WANG ; Pengli WANG ; Qiushi WANG ; Xiaoning WANG ; Xinhua WANG ; Xuefeng WANG ; Yong WANG ; Yongjun WANG ; Yuanjie WANG ; Zhihua WANG ; Shaojun WEI ; Yaming WEI ; Jianbo WEN ; Jun WEN ; Jiang WU ; Jufeng WU ; Aijun XIA ; Fei XIA ; Rong XIA ; Jue XIE ; Yanchao XING ; Yan XIONG ; Feng XU ; Yongzhu XU ; Yongan XU ; Yonghe YAN ; Beizhan YAN ; Jiang YANG ; Jiangcun YANG ; Jun YANG ; Xinwen YANG ; Yongyi YANG ; Chunyan YAO ; Mingliang YE ; Changlin YIN ; Ming YIN ; Wen YIN ; Lianling YU ; Shuhong YU ; Zebo YU ; Yigang YU ; Anyong YU ; Hong YUAN ; Yi YUAN ; Chan ZHANG ; Jinjun ZHANG ; Jun ZHANG ; Kai ZHANG ; Leibing ZHANG ; Quan ZHANG ; Rongjiang ZHANG ; Sanming ZHANG ; Shengji ZHANG ; Shuo ZHANG ; Wei ZHANG ; Weidong ZHANG ; Xi ZHANG ; Xingwen ZHANG ; Guixi ZHANG ; Xiaojun ZHANG ; Guoqing ZHAO ; Jianpeng ZHAO ; Shuming ZHAO ; Beibei ZHENG ; Shangen ZHENG ; Huayou ZHOU ; Jicheng ZHOU ; Lihong ZHOU ; Mou ZHOU ; Xiaoyu ZHOU ; Xuelian ZHOU ; Yuan ZHOU ; Zheng ZHOU ; Zuhuang ZHOU ; Haiyan ZHU ; Peiyuan ZHU ; Changju ZHU ; Lili ZHU ; Zhengguo WANG ; Jianxin JIANG ; Deqing WANG ; Jiongcai LAN ; Quanli WANG ; Yang YU ; Lianyang ZHANG ; Aiqing WEN
Chinese Journal of Trauma 2024;40(10):865-881
Patients with severe trauma require an extremely timely treatment and transfusion plays an irreplaceable role in the emergency treatment of such patients. An increasing number of evidence-based medicinal evidences and clinical practices suggest that patients with severe traumatic bleeding benefit from early transfusion of low-titer group O whole blood or hemostatic resuscitation with red blood cells, plasma and platelet of a balanced ratio. However, the current domestic mode of blood supply cannot fully meet the requirements of timely and effective blood transfusion for emergency treatment of patients with severe trauma in clinical practice. In order to solve the key problems in blood supply and blood transfusion strategies for emergency treatment of severe trauma, Branch of Clinical Transfusion Medicine of Chinese Medical Association, Group for Trauma Emergency Care and Multiple Injuries of Trauma Branch of Chinese Medical Association, Young Scholar Group of Disaster Medicine Branch of Chinese Medical Association organized domestic experts of blood transfusion medicine and trauma treatment to jointly formulate Chinese expert consensus on blood support mode and blood transfusion strategies for emergency treatment of severe trauma patients ( version 2024). Based on the evidence-based medical evidence and Delphi method of expert consultation and voting, 10 recommendations were put forward from two aspects of blood support mode and transfusion strategies, aiming to provide a reference for transfusion resuscitation in the emergency treatment of severe trauma and further improve the success rate of treatment of patients with severe trauma.
9.Xuebijing injection alleviates inflammatory response in isolated empty beating pig hearts preserved by ECMO
Chunhua WANG ; Xiao YUE ; Wei WU ; Guanbin QIN ; Lan LUO ; Qiangxin HUANG ; Shijie YIN
Organ Transplantation 2024;15(5):772-779
Objective To investigate the regulatory effect of Xuebijing injection on inflammatory reaction during the preservation of isolated empty beating pig hearts with extracorporeal membrane oxygenation.Methods Twelve healthy Guangxi Bama miniature pigs were randomly divided into the Xuebijing group(n=6)and normal saline group(n=6).After the models were established in the Xuebijing group,Xuebijing injection was given at a dose of 5 mL/h through micropump in membrane oxygenator.In the normal saline group,an equivalent amount of 0.9%sodium chloride injection was pumped.Continuous pumping was performed for 8 h in both groups.The time of cardiac resuscitation and perfusion pressure,heart rate,perfusion flow rate after 8 h preservation were recorded in two groups.Pathological and ultrastructural changes of myocardial tissues in the left ventricular wall of hearts with cardiac arrest were observed after 8 h preservation.Serum levels of myocardial injury markers and inflammatory cytokines were detected in two groups at the beginning(T0),2 h(T2),4 h(T4),6 h(T6)and 8 h(T8)after model establishment,respectively.The expression levels of NOD-like receptor protein 3(NLRP3),cysteinyl aspartate specific proteinase-1(Caspase-1),apoptosis-associated speck-like protein containing a CARD(ASC)messenger RNA(mRNA)in myocardial tissues were measured at T0,T2,T4,T6 and T8,respectively.Results There were no significant differences in the time of cardiac resuscitation and perfusion pressure,heart rate,perfusion flow rate after 8 h preservation between two groups(all P>0.05).Compared with the normal saline group,the levels of lactate dehydrogenase(LDH)at T4,creatine kinase(CK),LDH and α-hydroxybutyrate dehydrogenase(α-HBDH)at T6 and T8,tumor necrosis factor(TNF)-α at T4,T6 and T8,and interleukin(IL)-6,IL-18 and IL-1 β at T0,T2,T4,T6 and T8 were lower,and the mRNA relative expression levels of NLRP3 and Caspase-1 at T2,T4 and T6,and Caspase-1 and ASC at T8 were lower in the Xuebijing group,respectively(all P<0.05).Hematoxylin-eosin staining and transmission electron microscopy showed that the degree of myocardial injury in the Xuebijing group was slighter than that in the normal saline group.Conclusions Xuebijing injection may effectively mitigate inflammatory response and exert certain myocardial protection effect during the ECMO preservation of isolated empty beating pig hearts.
10.Asia-Pacific consensus on long-term and sequential therapy for osteoporosis
Ta-Wei TAI ; Hsuan-Yu CHEN ; Chien-An SHIH ; Chun-Feng HUANG ; Eugene MCCLOSKEY ; Joon-Kiong LEE ; Swan Sim YEAP ; Ching-Lung CHEUNG ; Natthinee CHARATCHAROENWITTHAYA ; Unnop JAISAMRARN ; Vilai KUPTNIRATSAIKUL ; Rong-Sen YANG ; Sung-Yen LIN ; Akira TAGUCHI ; Satoshi MORI ; Julie LI-YU ; Seng Bin ANG ; Ding-Cheng CHAN ; Wai Sin CHAN ; Hou NG ; Jung-Fu CHEN ; Shih-Te TU ; Hai-Hua CHUANG ; Yin-Fan CHANG ; Fang-Ping CHEN ; Keh-Sung TSAI ; Peter R. EBELING ; Fernando MARIN ; Francisco Javier Nistal RODRÍGUEZ ; Huipeng SHI ; Kyu Ri HWANG ; Kwang-Kyoun KIM ; Yoon-Sok CHUNG ; Ian R. REID ; Manju CHANDRAN ; Serge FERRARI ; E Michael LEWIECKI ; Fen Lee HEW ; Lan T. HO-PHAM ; Tuan Van NGUYEN ; Van Hy NGUYEN ; Sarath LEKAMWASAM ; Dipendra PANDEY ; Sanjay BHADADA ; Chung-Hwan CHEN ; Jawl-Shan HWANG ; Chih-Hsing WU
Osteoporosis and Sarcopenia 2024;10(1):3-10
Objectives:
This study aimed to present the Asia-Pacific consensus on long-term and sequential therapy for osteoporosis, offering evidence-based recommendations for the effective management of this chronic condition.The primary focus is on achieving optimal fracture prevention through a comprehensive, individualized approach.
Methods:
A panel of experts convened to develop consensus statements by synthesizing the current literature and leveraging clinical expertise. The review encompassed long-term anti-osteoporosis medication goals, first-line treatments for individuals at very high fracture risk, and the strategic integration of anabolic and anti resorptive agents in sequential therapy approaches.
Results:
The panelists reached a consensus on 12 statements. Key recommendations included advocating for anabolic agents as the first-line treatment for individuals at very high fracture risk and transitioning to anti resorptive agents following the completion of anabolic therapy. Anabolic therapy remains an option for in dividuals experiencing new fractures or persistent high fracture risk despite antiresorptive treatment. In cases of inadequate response, the consensus recommended considering a switch to more potent medications. The consensus also addressed the management of medication-related complications, proposing alternatives instead of discontinuation of treatment.
Conclusions
This consensus provides a comprehensive, cost-effective strategy for fracture prevention with an emphasis on shared decision-making and the incorporation of country-specific case management systems, such as fracture liaison services. It serves as a valuable guide for healthcare professionals in the Asia-Pacific region, contributing to the ongoing evolution of osteoporosis management.

Result Analysis
Print
Save
E-mail