1.Outcomes of identifying enlarged vestibular aqueduct (Mondini malformation) related gene mutation in Mongolian people
Jargalkhuu E ; Tserendulam B ; Maralgoo J ; Zaya M ; Enkhtuya B ; Ulzii B ; Ynjinlhkam E ; Chuluun-Erdene Ts ; Chen-Chi Wu ; Cheng-Yu Tsai ; Yin-Hung Lin ; Yi-Hsin Lin ; Yen-Hui Chan ; Chuan-Jen Hsu ; Wei-Chung Hsu ; Pei-Lung Chen
Mongolian Journal of Health Sciences 2025;87(3):8-15
Background:
Hearing loss (HL) is one of the most common sensory disorders,
affecting over 5-8% of the world's population. Approximately half of HL cases are
attributed to genetic factors. In hereditary deafness, about 75-80% is inherited
through autosomal recessive inheritance, and common pathogenic genes include
GJB2 and SLC26A4. Pathogenic variants in the SLC26A4gene are the leading
cause of hereditary hearing loss in humans, second only to the GJB2 gene. Variants in the SLC26A4gene cause hearing loss, which can be non-syndromic autosomal recessive deafness (DFNB4, OMIM #600791) associated with enlarged
vestibular aqueduct (EVA) or Pendred syndrome (Pendred, OMIM #605646).
DFNB4 is characterized by sensorineural hearing loss combined with EVA or less
common cochlear malformation defect. Pendred syndrome is characterized by bilateral sensorineural hearing loss with EVA and an iodine defect that can lead to
thyroid goiter. Currently, it is known that EVA is associated with variants in the
SLC26A4 gene and is a penetrant feature of SLC26A4-related HL. Predominant
mutations in these genes differ significantly across populations. For instance, predominant SLC26A4 mutations differ among populations, including p.T416P and
c.1001G>A in Caucasians, p.H723R in Japanese and Koreans, and c.919-2A>G
in Han Taiwanese and Han Chinese. On the other hand, there has been no study
of hearing loss related to SLC26A4 gene variants among Mongolians, which is the
basis of our research.
Aim:
We aimed to identify the characteristics of the SLC26A4 gene variants in
Mongolian people with Enlarged vestibular aqueduct and Mondini malformation.
Materials and Methods:
In 2022-2024, We included 13 people with hearing loss
and enlarged vestibular aqueduct, incomplete cochlea (1.5 turns of the cochlea
with cystic apex- incomplete partition type II- Mondini malformation) were examined by CT scan of the temporal bone in our study. WES (Whole exome sequencing) analysis was performed in the Genetics genetic-laboratory of the National
Taiwan University Hospital.
Results:
Genetic analysis revealed 26 confirmed pathogenic variants of bi-allelic
SLC26A4 gene of 8 different types in 13 cases, and c.919-2A>G variant was dominant with 46% (12/26) in allele frequency, and c.2027T>A (p.L676Q) variant 19%
(5/26), c.1318A>T(p.K440X) variant 11% (3/26), c.1229C>T (p.T410M) variant 8%
(2/26) ) , c.716T>A (p.V239D), c.281C>T (p.T94I), c.1546dupC, and c.1975G>C
(p.V659L) variants were each 4% (1/26)- revealed. Two male children, 11 years
old (SLC26A4: c.919-2A>G) and 7 years old (SLC26A4: c.919-2A>G:, SLC26A4:
c.2027T>A (p.L676Q))had history of born normal hearing and progressive hearing
loss.
Conclusions
1. 26 variants of bi-allelic SLC26A4 gene mutation were detected
in Mongolian people with EVA and Mondini malformation, and c.919-2A>G was
the most dominant allele variant, and rare variants such as c.1546dupC, c.716T>A
(p.V239D) were detected.
2. Our study shows that whole-exome sequencing (WES) can identify gene
mutations that are not detected by polymerase chain reaction (PCR) or NGS analysis.
3.Therapeutic Effects of Theta Burst Stimulation on Cognition Following Brain Injury
Wan-Ting CHEN ; Yi-Wei YEH ; Shin-Chang KUO ; Yi-Chih SHIAO ; Chih-Chung HUANG ; Yi-Guang WANG ; Chun-Yen CHEN
Clinical Psychopharmacology and Neuroscience 2025;23(1):161-165
This case report explores the therapeutic potential of theta burst stimulation (TBS) for cognitive enhancement in individuals with brain injuries. The study presents a 38-year-old male suffering from an organic mental disorder attributed to a traumatic brain injury (TBI), who demonstrated notable cognitive improvements following an intensive TBS protocol targeting the left dorsal lateral prefrontal cortex. The treatment led to significant enhancements in impulse control, irritability, and verbal comprehension without adverse effects. Neuropsychological assessments and brain imaging post-intervention revealed improvements in short-term memory, abstract reasoning, list-generating fluency, and increased cerebral blood flow in the prefrontal cortex. These findings suggest that TBS, by promoting neural plasticity and reconfiguring neural networks, offers a promising avenue for cognitive rehabilitation in TBI patients. Further research is warranted to optimize TBS protocols and understand the mechanisms underlying its cognitive benefits.
4.6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation
Sher-Wei LIM ; Wei-Chung CHEN ; Huey-Jiun KO ; Yu-Feng SU ; Chieh-Hsin WU ; Fu-Long HUANG ; Chien-Feng LI ; Cheng Yu TSAI
Biomolecules & Therapeutics 2025;33(1):129-142
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
5.Therapeutic Effects of Theta Burst Stimulation on Cognition Following Brain Injury
Wan-Ting CHEN ; Yi-Wei YEH ; Shin-Chang KUO ; Yi-Chih SHIAO ; Chih-Chung HUANG ; Yi-Guang WANG ; Chun-Yen CHEN
Clinical Psychopharmacology and Neuroscience 2025;23(1):161-165
This case report explores the therapeutic potential of theta burst stimulation (TBS) for cognitive enhancement in individuals with brain injuries. The study presents a 38-year-old male suffering from an organic mental disorder attributed to a traumatic brain injury (TBI), who demonstrated notable cognitive improvements following an intensive TBS protocol targeting the left dorsal lateral prefrontal cortex. The treatment led to significant enhancements in impulse control, irritability, and verbal comprehension without adverse effects. Neuropsychological assessments and brain imaging post-intervention revealed improvements in short-term memory, abstract reasoning, list-generating fluency, and increased cerebral blood flow in the prefrontal cortex. These findings suggest that TBS, by promoting neural plasticity and reconfiguring neural networks, offers a promising avenue for cognitive rehabilitation in TBI patients. Further research is warranted to optimize TBS protocols and understand the mechanisms underlying its cognitive benefits.
6.6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation
Sher-Wei LIM ; Wei-Chung CHEN ; Huey-Jiun KO ; Yu-Feng SU ; Chieh-Hsin WU ; Fu-Long HUANG ; Chien-Feng LI ; Cheng Yu TSAI
Biomolecules & Therapeutics 2025;33(1):129-142
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
7.Therapeutic Effects of Theta Burst Stimulation on Cognition Following Brain Injury
Wan-Ting CHEN ; Yi-Wei YEH ; Shin-Chang KUO ; Yi-Chih SHIAO ; Chih-Chung HUANG ; Yi-Guang WANG ; Chun-Yen CHEN
Clinical Psychopharmacology and Neuroscience 2025;23(1):161-165
This case report explores the therapeutic potential of theta burst stimulation (TBS) for cognitive enhancement in individuals with brain injuries. The study presents a 38-year-old male suffering from an organic mental disorder attributed to a traumatic brain injury (TBI), who demonstrated notable cognitive improvements following an intensive TBS protocol targeting the left dorsal lateral prefrontal cortex. The treatment led to significant enhancements in impulse control, irritability, and verbal comprehension without adverse effects. Neuropsychological assessments and brain imaging post-intervention revealed improvements in short-term memory, abstract reasoning, list-generating fluency, and increased cerebral blood flow in the prefrontal cortex. These findings suggest that TBS, by promoting neural plasticity and reconfiguring neural networks, offers a promising avenue for cognitive rehabilitation in TBI patients. Further research is warranted to optimize TBS protocols and understand the mechanisms underlying its cognitive benefits.
9.6-Gingerol Induced Apoptosis and Cell Cycle Arrest in Glioma Cells via MnSOD and ERK Phosphorylation Modulation
Sher-Wei LIM ; Wei-Chung CHEN ; Huey-Jiun KO ; Yu-Feng SU ; Chieh-Hsin WU ; Fu-Long HUANG ; Chien-Feng LI ; Cheng Yu TSAI
Biomolecules & Therapeutics 2025;33(1):129-142
6-gingerol, a bioactive compound from ginger, has demonstrated promising anticancer properties across various cancer models by inducing apoptosis and inhibiting cell proliferation and invasion. In this study, we explore its mechanisms against glioblastoma multiforme (GBM), a notably aggressive and treatment-resistant brain tumor. We found that 6-gingerol crosses the blood-brain barrier more effectively than curcumin, enhancing its potential as a therapeutic agent for brain tumors. Our experiments show that 6-gingerol reduces cell proliferation and triggers apoptosis in GBM cell lines by disrupting cellular energy homeostasis. This process involves an increase in mitochondrial reactive oxygen species (mtROS) and a decrease in mitochondrial membrane potential, primarily due to the downregulation of manganese superoxide dismutase (MnSOD). Additionally, 6-gingerol reduces ERK phosphorylation by inhibiting EGFR and RAF, leading to G1 phase cell cycle arrest. These findings indicate that 6-gingerol promotes cell death in GBM cells by modulating MnSOD and ROS levels and arresting the cell cycle through the ERFR-RAF-1/MEK/ ERK signaling pathway, highlighting its potential as a therapeutic agent for GBM and setting the stage for future clinical research.
10.Therapeutic Effects of Theta Burst Stimulation on Cognition Following Brain Injury
Wan-Ting CHEN ; Yi-Wei YEH ; Shin-Chang KUO ; Yi-Chih SHIAO ; Chih-Chung HUANG ; Yi-Guang WANG ; Chun-Yen CHEN
Clinical Psychopharmacology and Neuroscience 2025;23(1):161-165
This case report explores the therapeutic potential of theta burst stimulation (TBS) for cognitive enhancement in individuals with brain injuries. The study presents a 38-year-old male suffering from an organic mental disorder attributed to a traumatic brain injury (TBI), who demonstrated notable cognitive improvements following an intensive TBS protocol targeting the left dorsal lateral prefrontal cortex. The treatment led to significant enhancements in impulse control, irritability, and verbal comprehension without adverse effects. Neuropsychological assessments and brain imaging post-intervention revealed improvements in short-term memory, abstract reasoning, list-generating fluency, and increased cerebral blood flow in the prefrontal cortex. These findings suggest that TBS, by promoting neural plasticity and reconfiguring neural networks, offers a promising avenue for cognitive rehabilitation in TBI patients. Further research is warranted to optimize TBS protocols and understand the mechanisms underlying its cognitive benefits.

Result Analysis
Print
Save
E-mail