1.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
2.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
3.Carvedilol to prevent hepatic decompensation of cirrhosis in patients with clinically significant portal hypertension stratified by new non-invasive model (CHESS2306)
Chuan LIU ; Hong YOU ; Qing-Lei ZENG ; Yu Jun WONG ; Bingqiong WANG ; Ivica GRGUREVIC ; Chenghai LIU ; Hyung Joon YIM ; Wei GOU ; Bingtian DONG ; Shenghong JU ; Yanan GUO ; Qian YU ; Masashi HIROOKA ; Hirayuki ENOMOTO ; Amr Shaaban HANAFY ; Zhujun CAO ; Xiemin DONG ; Jing LV ; Tae Hyung KIM ; Yohei KOIZUMI ; Yoichi HIASA ; Takashi NISHIMURA ; Hiroko IIJIMA ; Chuanjun XU ; Erhei DAI ; Xiaoling LAN ; Changxiang LAI ; Shirong LIU ; Fang WANG ; Ying GUO ; Jiaojian LV ; Liting ZHANG ; Yuqing WANG ; Qing XIE ; Chuxiao SHAO ; Zhensheng LIU ; Federico RAVAIOLI ; Antonio COLECCHIA ; Jie LI ; Gao-Jun TENG ; Xiaolong QI
Clinical and Molecular Hepatology 2025;31(1):105-118
Background:
s/Aims: Non-invasive models stratifying clinically significant portal hypertension (CSPH) are limited. Herein, we developed a new non-invasive model for predicting CSPH in patients with compensated cirrhosis and investigated whether carvedilol can prevent hepatic decompensation in patients with high-risk CSPH stratified using the new model.
Methods:
Non-invasive risk factors of CSPH were identified via systematic review and meta-analysis of studies involving patients with hepatic venous pressure gradient (HVPG). A new non-invasive model was validated for various performance aspects in three cohorts, i.e., a multicenter HVPG cohort, a follow-up cohort, and a carvediloltreating cohort.
Results:
In the meta-analysis with six studies (n=819), liver stiffness measurement and platelet count were identified as independent risk factors for CSPH and were used to develop the new “CSPH risk” model. In the HVPG cohort (n=151), the new model accurately predicted CSPH with cutoff values of 0 and –0.68 for ruling in and out CSPH, respectively. In the follow-up cohort (n=1,102), the cumulative incidences of decompensation events significantly differed using the cutoff values of <–0.68 (low-risk), –0.68 to 0 (medium-risk), and >0 (high-risk). In the carvediloltreated cohort, patients with high-risk CSPH treated with carvedilol (n=81) had lower rates of decompensation events than non-selective beta-blockers untreated patients with high-risk CSPH (n=613 before propensity score matching [PSM], n=162 after PSM).
Conclusions
Treatment with carvedilol significantly reduces the risk of hepatic decompensation in patients with high-risk CSPH stratified by the new model.
4.The impact of postpartum depression on maternal responsiveness in infant care
Shuzhen LI ; Fang WANG ; Ke WANG ; Su LIU ; Qian WEI ; Qing YANG ; Leilei LIU ; Huijing SHI
Shanghai Journal of Preventive Medicine 2025;37(3):271-275
ObjectiveTo analyze the impact of maternal postpartum depression (PPD) at 2 months postpartum on caregiving for infants aged2 to 24 months, and to provide a scientific basis for future maternal and infant healthcare services. MethodsBased on the Shanghai Maternal-Child Pairs Cohort, 1 060 mother-child pairs were selected from those fully participating in follow-up visits at 2, 6, 12, and 24 months postpartum. Pregnancy and childbirth-related information was collected using standardized questionnaire surveys and hospital obstetric and maternity records. The Edinburgh postpartum depression scale was used to assess the maternal postpartum depressive symptoms at 2 months postpartum. At 2, 6, 12, and 24 months postpartum, questionnaire survey was used to evaluate the maternal responsiveness in caregiving and the provision of early learning opportunities for infants. Scores for responsive caregiving and early learning opportunities at 2, 6, 12, and 24 months were grouped based on the 25th percentile (P25) of total scores. The mixed-effects model was used to analyze the longitudinal impact of maternal postpartum depression at 2 months on the caregiving of 2 to 24-month-old infants. ResultsThe longitudinal results from the mixed-effects model did not show an impact of maternal PPD on infant responsive caregiving within 12 months and early learning opportunities within24 months. However, cross-sectional analysis revealed that, compared to the non-PPD group, the risk of low responsive caregiving at 2 months in the PPD group was 93% higher (OR=1.931, 95%CI: 1.113‒3.364, P=0.019). The risks for low provision of early learning opportunities at2 months and 24 months increased by 59% (OR=1.589, 95%CI: 1.082‒2.324, P=0.017) and 60% (OR=1.598, 95%CI:1.120‒2.279, P=0.010), respectively. ConclusionMaternal postpartum depression increases the risk of low responsive caregiving at 2 months, but its long-term effects warrant further research.
5.The Application of Spatial Resolved Metabolomics in Neurodegenerative Diseases
Lu-Tao XU ; Qian LI ; Shu-Lei HAN ; Huan CHEN ; Hong-Wei HOU ; Qing-Yuan HU
Progress in Biochemistry and Biophysics 2025;52(9):2346-2359
The pathogenesis of neurodegenerative diseases (NDDs) is fundamentally linked to complex and profound alterations in metabolic networks within the brain, which exhibit marked spatial heterogeneity. While conventional bulk metabolomics is powerful for detecting global metabolic shifts, it inherently lacks spatial resolution. This methodological limitation hampers the ability to interrogate critical metabolic dysregulation within discrete anatomical brain regions and specific cellular microenvironments, thereby constraining a deeper understanding of the core pathological mechanisms that initiate and drive NDDs. To address this critical gap, spatial metabolomics, with mass spectrometry imaging (MSI) at its core, has emerged as a transformative approach. It uniquely overcomes the limitations of bulk methods by enabling high-resolution, simultaneous detection and precise localization of hundreds to thousands of endogenous molecules—including primary metabolites, complex lipids, neurotransmitters, neuropeptides, and essential metal ions—directly in situ from tissue sections. This powerful capability offers an unprecedented spatial perspective for investigating the intricate and heterogeneous chemical landscape of NDD pathology, opening new avenues for discovery. Accordingly, this review provides a comprehensive overview of the field, beginning with a discussion of the technical features, optimal application scenarios, and current limitations of major MSI platforms. These include the widely adopted matrix-assisted laser desorption/ionization (MALDI)-MSI, the ultra-high-resolution technique of secondary ion mass spectrometry (SIMS)-MSI, and the ambient ionization method of desorption electrospray ionization (DESI)-MSI, along with other emerging technologies. We then highlight the pivotal applications of spatial metabolomics in NDD research, particularly its role in elucidating the profound chemical heterogeneity within distinct pathological microenvironments. These applications include mapping unique molecular signatures around amyloid β‑protein (Aβ) plaques, uncovering the metabolic consequences of neurofibrillary tangles composed of hyperphosphorylated tau protein, and characterizing the lipid and metabolite composition of Lewy bodies. Moreover, we examine how spatial metabolomics contributes to constructing detailed metabolic vulnerability maps across the brain, shedding light on the biochemical factors that render certain neuronal populations and anatomical regions selectively susceptible to degeneration while others remain resilient. Looking beyond current applications, we explore the immense potential of integrating spatial metabolomics with other advanced research methodologies. This includes its combination with three-dimensional brain organoid models to recapitulate disease-relevant metabolic processes, its linkage with multi-organ axis studies to investigate how systemic metabolic health influences neurodegeneration, and its convergence with single-cell and subcellular analyses to achieve unprecedented molecular resolution. In conclusion, this review not only summarizes the current state and critical role of spatial metabolomics in NDD research but also offers a forward-looking perspective on its transformative potential. We envision its continued impact in advancing our fundamental understanding of NDDs and accelerating translation into clinical practice—from the discovery of novel biomarkers for early diagnosis to the development of high-throughput drug screening platforms and the realization of precision medicine for individuals affected by these devastating disorders.
6.Mechanism of Yishen Jiangtang Decoction in regulating endoplasmic reticulum stress-mediated NLRP3 inflammasome to improve renal damage in diabetic nephropathy db/db mice.
Yun-Jie YANG ; Bin-Hua YE ; Chen QIU ; Han-Qing WU ; Bo-Wei HUANG ; Tong WANG ; Shi-Wei RUAN ; Fang GUO ; Jian-Ting WANG ; Ming-Qian JIANG
China Journal of Chinese Materia Medica 2025;50(10):2740-2749
This study aims to explore the mechanism through which Yishen Jiangtang Decoction(YSJTD) regulates endoplasmic reticulum stress(ERS)-mediated NOD-like receptor thermal protein domain associated protein 3(NLRP3) inflammasome to improve diabetic nephropathy(DN) in db/db mice. Thirty db/db mice were randomly divided into the model group, YSJTD group, ERS inhibitor 4-phenylbutyric acid(4-PBA) group, with 10 mice in each group. Additionally, 10 db/m mice were selected as the control group. The YSJTD group was orally administered YSJTD at a dose of 0.01 mL·g~(-1), the 4-PBA group was orally administered 4-PBA at a dose of 0.5 mg·g~(-1), and the control and model groups were given an equal volume of carboxylmethyl cellulose sodium. The treatments were administered once daily for 8 weeks. Food intake, water consumption, and body weight were recorded every 2 weeks. After the intervention, fasting blood glucose(FBG), glycosylated hemoglobin(HbA1c), urine microalbumin(U-mALB), 24-hour urine volume, serum creatinine(Scr), and blood urea nitrogen(BUN) were measured. Inflammatory markers interleukin-1β(IL-1β) and interleukin-18(IL-18) were detected using the enzyme-linked immunosorbent assay(ELISA). Renal pathology was assessed through hematoxylin-eosin(HE), periodic acid-Schiff(PAS), and Masson staining, and transmission electron microscopy(TEM). Western blot was used to detect the expression levels of glucose-regulated protein 78(GRP78), C/EBP homologous protein(CHOP), NLRP3, apoptosis-associated speck-like protein containing CARD(ASC), cysteinyl aspartate-specific proteinase(caspase-1), and gasdermin D(GSDMD) in kidney tissues. The results showed that compared to the control group, the model group exhibited poor general condition, increased weight and food and water intake, and significantly higher levels of FBG, HbA1c, U-mALB, kidney index, 24-hour urine volume, IL-1β, and IL-18. Compared to the model group, the YSJTD and 4-PBA groups showed improved general condition, increased body weight, decreased food intake, and lower levels of FBG, U-mALB, kidney index, 24-hour urine volume, and IL-1β. Specifically, the YSJTD group showed a significant reduction in IL-18 levels compared to the model group, while the 4-PBA group exhibited decreased water intake and HbA1c levels compared to the model group. Although there was a decreasing trend in water intake and HbA1c in the YSJTD group, the differences were not statistically significant. No significant differences were observed in BUN, Scr, and kidney weight among the groups. Renal pathology revealed that the model group exhibited more severe renal damage compared to the control group. Kidney sections from the model group showed diffuse mesangial proliferation in the glomeruli, tubular edema, tubular dilation, significant inflammatory cell infiltration in the interstitium, and increased glycogen staining and blue collagen deposition in the basement membrane. In contrast, the YSJTD and 4-PBA groups showed varying degrees of improvement in renal damage, glycogen staining, and collagen deposition, with the YSJTD group showing more significant improvements. TEM analysis indicated that the model group had extensive cytoplasmic edema, homogeneous thickening of the basement membrane, fewer foot processes, and widening of fused foot processes. In the YSJTD and 4-PBA groups, cytoplasmic swelling of renal tissues was reduced, the basement membrane remained intact and uniform, and foot process fusion improved.Western blot results indicated that compared to the control group, the model group showed upregulation of GRP78, CHOP, GSDMD, NLRP3, ASC, and caspase-1 expression. In contrast, both the YSJTD and 4-PBA groups showed downregulation of these markers compared to the model group. These findings suggest that YSJTD exerts a protective effect against DN by alleviating NLRP3 inflammasome activation through the inhibition of ERS, thereby improving the inflammatory response in db/db DN mice.
Animals
;
Endoplasmic Reticulum Stress/drug effects*
;
Diabetic Nephropathies/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
;
Drugs, Chinese Herbal/administration & dosage*
;
Mice
;
Inflammasomes/drug effects*
;
Male
;
Kidney/pathology*
;
Endoplasmic Reticulum Chaperone BiP
;
Humans
;
Interleukin-18/genetics*
;
Mice, Inbred C57BL
7.The Applications of Hematoporphyrin in the Treatment of Multiple Myeloma.
Jin-Xing WANG ; Xiu-Juan HUANG ; Qian ZOU ; Peng-Wei ZHANG ; Wei ZHU ; Fa-Qing TIAN
Journal of Experimental Hematology 2025;33(5):1374-1379
OBJECTIVE:
Photodynamic therapy has become an important method in clinical tumor treatment. This study aimed to investigate the effects of hematoporphyrin on multiple myeloma (MM) and its potential applications.
METHODS:
The MM cell line RPMI 8226 was treated with hematoporphyrin derivative (HPD), and CCK-8 assay was used to determine cell viability, apoptosis was detected by flow cytometry, intracellular reactive oxygen species (ROS) levels were measured using a detection kit combined with flow cytometry, and Western blot assay was used to detect apoptosis-related proteins and key signaling pathway protein levels.
RESULTS:
The optimal incubation time for the maximum absorption of HPD in RPMI 8226 cells was 4 hours. HPD significantly inhibited the proliferation of RPMI 8226 cells in a dose- and illumination time-dependent manner ( r =0.981; r =0.961). Additionally, HPD induced apoptosis in RPMI 8226 cells, but had no significant inhibitory effect on peripheral blood mononuclear cells derived from healthy individuals. HPD combined with illumination treatment significantly increased the intracellular ROS level, upregulated the expression of apoptosis-related proteins such as cleaved PARP, cleaved caspase-3 and Bax, and down-regulated the expression of proteins that maintain cell survival, such as NF-κB and Akt.
CONCLUSION
The HPD can inhibit the proliferation and induce apoptosis of multiple myeloma cells.
Humans
;
Multiple Myeloma/pathology*
;
Hematoporphyrins/pharmacology*
;
Apoptosis/drug effects*
;
Cell Line, Tumor
;
Reactive Oxygen Species/metabolism*
;
Cell Proliferation/drug effects*
;
Photochemotherapy
;
Cell Survival/drug effects*
;
Signal Transduction
8.Efficacy and Safety of Juan Bi Pill with Add-on Methotrexate in Active Rheumatoid Arthritis: A 48-Week, Multicentre, Randomized, Double-Blind, Placebo-Controlled Trial.
Qing-Yun JIA ; Yi-Ru WANG ; Da-Wei SUN ; Jian-Chun MAO ; Luan XUE ; Xiao-Hua GU ; Xiang YU ; Xue-Mei PIAO ; Hao XU ; Qian-Qian LIANG
Chinese journal of integrative medicine 2025;31(2):99-107
OBJECTIVE:
To explore the efficacy and safety of Juan Bi Pill (JBP) in treatment of active rheumatoid arthritis (RA).
METHODS:
From February 2017 to May 2018, 115 participants from 4 centers were randomly divided into JBP group (57 cases) and placebo group (58 cases) in a 1:1 ratio using a random number table method. Participants received a dose of JBP (4 g, twice a day, orally) combined with methotrexate (MTX, 10 mg per week) or placebo (4 g, twice a day, orally) combined with MTX for 12 weeks. Participants were required with follow-up visits at 24 and 48 weeks, attending 7 assessment visits. Participants were undergo disease activity assessment 7 times (at baseline and 2, 4, 8, 12, 24, 48 weeks) and safety assessments 6 times (at baseline and 4, 8, 12, 24, 48 weeks). The primary endpoint was 28-joint Disease Activity Score (DAS28-ESR and DAS28-CRP). The secondary endpoints included American College of Rheumatology (ACR) criteria for 20% and 50% improvement (ACR20/50), Health Assessment Questionnaire Disability Index (HAQ-DI), clinical disease activity index (CDAI), visual analog scale (VAS), Short Form-36 (SF-36) score, Medial Outcomes Study (MOS) sleep scale score, serum erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), tender joint count, swollen joint count, and morning stiffness. The adverse reactions were observed during the treatment.
RESULTS:
After 12 weeks of treatment, DAS28-ESR and DAS28-CRP scores in both groups were lower than before treatment (both P<0.01), while the remission rate of DAS28-ESR and DAS28-CRP and low disease activity of JBP group were higher than those in the placebo group (both P<0.01). JBP demonstrated better efficacy on ACR20 and ACR50 compliance rate at 12 and 48 weeks comparing to placebo (all P<0.05). The CDAI and HAQ-DI score, pain VAS and global VAS change of RA patients and physicians, the serum ESR and CRP levels, and the number of tenderness and swelling joints were lower than before treatment at 4, 8, 12, 24, 48 weeks in both groups (P<0.05 or P<0.01), while the reduction of above indices in the JBP group was more obvious than those in the placebo group at 12 weeks (ESR and CRP, both P<0.05) or at 12 and 48 weeks (all P<0.01). There was no difference in adverse reactions between the 2 groups during treatment (P=0.75).
CONCLUSION
JBP combined with MTX could effectively reduce disease activity in patients with RA in active stage, reduce the symptoms of arthritis, and improve the quality of life, while ensuring safety, reliability, and fewer adverse effects. (Trial Registration: ClinicalTrials.gov, No. NCT02885597).
Humans
;
Arthritis, Rheumatoid/drug therapy*
;
Methotrexate/adverse effects*
;
Female
;
Double-Blind Method
;
Male
;
Middle Aged
;
Treatment Outcome
;
Drugs, Chinese Herbal/adverse effects*
;
Drug Therapy, Combination
;
Adult
;
Antirheumatic Agents/adverse effects*
;
Aged
9.Coral calcium hydride promotes peripheral mitochondrial division and reduces AT-II cells damage in ARDS via activation of the Trx2/Myo19/Drp1 pathway.
Qian LI ; Yang ANG ; Qing-Qing ZHOU ; Min SHI ; Wei CHEN ; Yujie WANG ; Pan YU ; Bing WAN ; Wanyou YU ; Liping JIANG ; Yadan SHI ; Zhao LIN ; Shaozheng SONG ; Manlin DUAN ; Yun LONG ; Qi WANG ; Wentao LIU ; Hongguang BAO
Journal of Pharmaceutical Analysis 2025;15(3):101039-101039
Acute respiratory distress syndrome (ARDS) is a common respiratory emergency, but current clinical treatment remains at the level of symptomatic support and there is a lack of effective targeted treatment measures. Our previous study confirmed that inhalation of hydrogen gas can reduce the acute lung injury of ARDS, but the application of hydrogen has flammable and explosive safety concerns. Drinking hydrogen-rich liquid or inhaling hydrogen gas has been shown to play an important role in scavenging reactive oxygen species and maintaining mitochondrial quality control balance, thus improving ARDS in patients and animal models. Coral calcium hydrogenation (CCH) is a new solid molecular hydrogen carrier prepared from coral calcium (CC). Whether and how CCH affects acute lung injury in ARDS remains unstudied. In this study, we observed the therapeutic effect of CCH on lipopolysaccharide (LPS) induced acute lung injury in ARDS mice. The survival rate of mice treated with CCH and hydrogen inhalation was found to be comparable, demonstrating a significant improvement compared to the untreated ARDS model group. CCH treatment significantly reduced pulmonary hemorrhage and edema, and improved pulmonary function and local microcirculation in ARDS mice. CCH promoted mitochondrial peripheral division in the early course of ARDS by activating mitochondrial thioredoxin 2 (Trx2), improved lung mitochondrial dysfunction induced by LPS, and reduced oxidative stress damage. The results indicate that CCH is a highly efficient hydrogen-rich agent that can attenuate acute lung injury of ARDS by improving the mitochondrial function through Trx2 activation.
10.Integrating explainable deep learning with multi-omics for screening progressive diagnostic biomarkers of hepatocellular carcinoma covering the "inflammation-cancer" transformation.
Saiyu LI ; Yiwen ZHANG ; Lifang GUAN ; Yijing DONG ; Mingzhe ZHANG ; Qian ZHANG ; Huarong XU ; Wei XIAO ; Zhenzhong WANG ; Yan CUI ; Qing LI
Journal of Pharmaceutical Analysis 2025;15(9):101253-101253
Image 1.

Result Analysis
Print
Save
E-mail