1.Clinical study of salvage second allogeneic hematopoietic stem cell transplantation in 17 cases
Wenqiong WANG ; Wei LIU ; Huihui LIU ; Xiaoying YANG ; Shuanglian XIE ; Hongtao LING ; Yiming ZHAO ; Yujun DONG
Organ Transplantation 2026;17(1):124-132
Objective To summarize and analyze the efficacy and influencing factors of second allogeneic hematopoietic stem cell transplantation (allo-HSCT) for acute leukemia relapsing after the first allo-HSCT. Methods Clinical data of 17 patients with acute leukemia who underwent second allo-HSCT at Peking University First Hospital from January 2005 to December 2024 were retrospectively analyzed. Results Among the 17 patients, 7 achieved long-term disease-free survival after second transplantation. The median progression-free survival after successful second transplantation was 7 months (range 8 days to 69 months). The relapse fatality was 24%, and the transplant-related fatality was 35%. Conclusions Second transplantation is an effective treatment for relapsed and refractory acute leukemia, but the relapse fatality and transplant-related fatality remain high. Patient age, time of relapse after the first transplantation and disease status before second transplantation are all factors that affect the efficacy of second transplantation. Younger age, late relapse and complete remission of disease before second transplantation are all beneficial for long-term disease-free survival after second transplantation.
2.Research progress on the relationship between early life obesogen exposure and childhood obesity
GAO Lei ; YE Zhen ; WANG Wei ; ZHAO Dong ; XU Peiwei ; ZHANG Ronghua
Journal of Preventive Medicine 2026;38(1):48-54
Childhood obesity has become a global public health issue. Current research indicates that early life obesogen exposure has emerged as a significant risk factor for childhood obesity. While obesogens have been confirmed to influence the development and progression of childhood obesity through mechanisms such as endocrine disruption and epigenetic programming, controversies remain regarding the establishment of causal relationships, assessment of combined exposures, and validation of transgenerational effects in humans. In recent years, novel approaches including multi-omics technologies, exposome-based analysis, and multigenerational cohort studies have integrated dynamic biomarker monitoring with analyses of social-environmental interactions, offering new perspectives and methodologies for constructing a systematic "exposure-mechanism-outcome" research framework. This article reviews literature from PubMed and Web of Science up to August 2025 on the association between early life obesogen exposure and childhood obesity, summarizing evidence on the health effects of early life obesogen exposure, major exposure pathways and internal exposure assessment, interactions and amplifying effects of social and environmental factors, as well as the biological mechanisms underlying obesogen action. It further examines current research frontiers and challenges, aiming to provide a theoretical foundation for early prevention and precision intervention of childhood obesity.
3.YTHDF1 regulation of Fis1 on the activation and proliferation and migration ability of hepatic stellate cells
Lin Jia ; Feng Sun ; Qiqi Dong ; Jingjing Yang ; Renpeng Zhou ; Wei Hu ; Chao Lu
Acta Universitatis Medicinalis Anhui 2025;60(1):49-58
Objective:
To explore the effect of YTH domain family protein 1(YTHDF1) on the activation, proliferation and migration of hepatic stellate cells(HSCs) by regulating mitochondrial fission mediated by mitochondrial fission protein 1(Fis1).
Methods:
The mouse hepatic stellate cell line JS-1 was treated with 5 ng/ml TGF-β1 for 24 h to induce its activation and proliferation, andYTHDF1-siRNA was used to construct aYTHDF1silencing model.The experiment was divided into Control group, TGF-β1 group, TGF-β1+si-NC group and TGF-β1+si-YTHDF1 group.Expression changes ofYTHDF1,Fis1and key indicators of fibrosis, type Ⅰ collagen(CollagenⅠ) and α-smooth muscle actin(α-SMA) were detected through reverse transcription quantitative polymerase chain reaction(RT-qPCR) and Western blot; CCK-8 was used to detect cell proliferation ability; Transwell migration assay and cell scratch assay were used to detect cell migration ability; immunofluorescence staining experiment was used to detect the effect ofYTHDF1onFis1-mediated mitochondrial fission; finally, JC-1 staining was used to experimentally detect the effect ofYTHDF1on mitochondrial membrane potential.
Results:
Compared with the Control group, RT-qPCR and Western blot experimental results showed that the expression ofYTHDF1andFis1increased in the TGF-β1 group(P<0.05,P<0.01;P<0.000 1), as well as the fibrosis markersCollagenⅠand the expression level of α-SMA increased(P<0.01;P<0.001,P<0.000 1); while adding CCK-8, the experimental results showed that the proliferation ability of HSCs in the TGF-β1 group was enhanced(P<0.000 1); Transwell experimental results showed that the migration ability of HSCs in the TGF-β1 group was enhanced(P<0.01); the cell scratch experiment results showed that the migration ability of HSCs in the TGF-β1 group was enhanced(P<0.000 1); the immunofluorescence experiment results showed that the TGF-β1 group Mito-Tracker Red staining andFis1co-localization signal increased(P<0.05); JC-1 staining experiment results showed that the mitochondrial membrane potential increased in the TGF-β1 group(P<0.01). Compared with the TGF-β1+si-NC group, RT-qPCR and Western blot experimental results showed that the expression ofYTHDF1andFis1in the TGF-β1+si-YTHDF1 group was reduced(P<0.01;P<0.001), and fibrosis markers the levels ofCollagenⅠandα-SMAwere reduced(P<0.01;P<0.001,P<0.01).CCK-8 experimental results showed that the proliferation ability of HSCs in the TGF-β1+si-YTHDF1 group was weakened(P<0.000 1); Transwell experiment results showed that the migration ability of HSCs in the TGF-β1+si-YTHDF1 group was weakened(P<0.001); cell scratch experiment results showed that the migration ability of HSCs in the TGF-β1+si-YTHDF1 group was weakened(P<0.000 1); immunofluorescence experiment results showed that the Mito-Tracker Red staining andFis1co-localization signal decreased in the TGF-β1+si-YTHDF1 group(P<0.01); JC-1 staining experiment results showed that mitochondrial membrane potential decreased in the TGF-β1+si-YTHDF1 group(P<0.05).
Conclusion
YTHDF1promotes the activation, proliferation and migration capabilities of HSCs by positively regulatingFis1-mediated mitochondrial fission. This suggests thatYTHDF1may be a key gene involved in regulating the activation, proliferation and migration of HSCs.
4.Clinical Advantages and Key Research Points of Traditional Chinese Medicine in the Treatment of Atrial Fibrillation
Cong SUN ; Yujiang DONG ; Hongmei GAO ; Qing WEI ; Menghe ZHANG ; Xiaojing SHI ; Liya FENG
Journal of Traditional Chinese Medicine 2025;66(2):133-138
Traditional Chinese medicine (TCM) therapy has unique clinical advantages in the treatment of atrial fibrillation, mainly reflected in five aspects, improving quality of life, enabling early diagnosis and treatment, promoting cardiac rehabilitation, making up for the limitations of Western medicine, and improving the success rate of catheter ablation. However, there is insufficient evidence in current clinical research. Based on the current status of TCM research in the treatment of atrial fibrillation, it is suggested that future studies should focus on standardized research on syndrome differentiation and classification. This can be achieved through clinical epidemiological surveys, expert consensus, and other methods to establish a unified syndrome differentiation and classification standard for atrial fibrillation. Clinical efficacy evaluation indicators should be standardized, and core outcome measures for clinical research on TCM treatment of atrial fibrillation should be developed through systematic reviews, patient interviews, and other methods. Additionally, clinical research design, implementation, and data management should be improved. By leveraging modern information technologies such as artificial intelligence, the scientific and standardized nature of TCM intervention research on atrial fibrillation can be enhanced, ultimately improving the quality of research.
5.Design, synthesis and degradation activity of PROTAC targeting SARS-CoV-2 main protease
Lai WEI ; Guoqiang DONG ; Chunquan SHENG
Journal of Pharmaceutical Practice and Service 2025;43(5):235-241
Objective To design and synthesize PROTAC degraders targeting the SARS-CoV-2 main protease (Mpro)based on PROTAC technology. Methods Compound 3w was used as the Mpro ligand, and the indole N atom in the solvent-exposed region was selected as the linker attachment site. A series of Mpro PROTACs were designed and synthesized by conjugating compound 3w with the CRBN ligand pomalidomide through alkane linkers of different lengths. The structures of the target compounds were confirmed by 1H NMR, 13C NMR, and HRMS. Western Blot analysis was employed to evaluate their degradation activity and explore its mechanism in Mpro-HEK-293T cells. Results Four novel Mpro PROTACs(A1-A4)were successfully synthesized. The most potent compound A4 demonstrated Mpro degradation activity with a DC50 value of 5.2 μmol/L, and its degradation mechanism was validated. Conclusion A novel class of Mpro PROTAC degraders were successfully designed and synthesized, and their protein degradation capability and mechanism of action were demonstrated. These results provided lead compounds for the research and development of antiviral degraders against SARS-CoV-2.
6.Correlation analysis of serum SIRT1 and Vasostatin-2 content with pathological changes in diabetic retinopathy patients
Qing DONG ; Bo LIU ; Xingyuan BAO ; Jing WEI
International Eye Science 2025;25(6):962-967
AIM: To investigate the correlation of serum Silent mating-type information regulation 2 homolog 1(SIRT1)and Vasostatin-2 content with pathological changes in diabetic retinopathy(DR)patients.METHODS: A total of 104 DR patients(104 eyes)admitted to our hospital from April 2021 to April 2024 were included as the DR group. According to different disease stages, they were assigned into a non-proliferative DR(NPDR)group of 44 cases(44 eyes)and a proliferative DR(PDR)group of 60 cases(60 eyes). Meantime, 104 patients(104 eyes)with simple diabetes were treated as non-DR group. ELISA was applied to detect the levels of SIRT1 and Vasostatin-2 in serum. The diagnostic value of serum SIRT1 and Vasostatin 2 in DR was analyzed by ROC curve. Multivariate Logistic regression was applied to analyze the factors that affected the occurrence of DR. Pearson correlation was applied to analyze the relationship between the levels of SIRT1 and Vasostatin-2 in the serum of DR patients and angiogenesis indicators(VEGF, Ang-2).RESULTS: Compared with the non-DR group, the levels of SIRT1 and Vasostatin-2 in the serum of the DR group were significantly decreased(P<0.05). Compared with the NPDR group, the levels of SIRT1 and Vasostatin-2 in the serum of the PDR group were significantly decreased(P<0.05). Compared with the non-DR group, the levels of VEGF and Ang-2 in the serum of the DR group were obviously higher(P<0.05). Compared with the single detection of serum SIRT1 and Vasostatin-2 levels, combined detection significantly increased the AUC in the diagnosis of DR(Z=4.180, 5.128, all P<0.05). Multivariate Logistic regression analysis showed that HOMA-IR(OR=3.455), fasting blood glucose(OR=1.467), SIRT1(OR=0.836), Vasostatin-2(OR=0.767), VEGF(OR=2.564), and Ang-2(OR=1.834)levels were the influencing factors on the occurrence of DR(all P<0.05). Pearson correlation analysis showed that the levels of SIRT1 and Vasostatin-2 in the serum of DR patients were negatively correlated with VEGF and Ang-2(rSIRT1 vs VEGF=-0.395, rSIRT1 vs Ang-2=-0.474, rVasostatin-2 vs VEGF=-0.323, rVasostatin-2 vs Ang-2=-0.583, all P<0.001).CONCLUSION: The abnormal decrease of serum SIRT1 and Vasostatin 2 levels in DR patients is closely related to the stage of DR lesions and angiogenesis.
7.Mechanism of imperatorin in ameliorating doxorubicin resistance of breast cancer based on transcriptomics
Yiting LI ; Wei DONG ; Xinli LIANG ; Hu WANG ; Yumei QIU ; Xiaoyun DING ; Hao ZHANG ; Huiyun BAO ; Xianxi LI ; Xilan TANG
China Pharmacy 2025;36(5):529-534
OBJECTIVE To investigate the ameliorative effect and potential mechanism of imperatorin (IMP) on doxorubicin (DOX) resistance in breast cancer. METHODS The effects of maximum non-toxic concentration (100 μg/mL) of IMP combined with different concentrations of DOX (12.5, 25, 50, 75, 100 μg/mL) on the proliferation of MCF-7/DOX cells were determined by MTT method. MCF-7/DOX cells were divided into blank control group (1‰ dimethyl sulfoxide), DOX group (50 μg/mL), IMP+DOX group (100 μg/mL IMP+50 μg/mL DOX) and IMP group (100 μg/mL). mRNA and protein expressions of multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 1 in each group were measured. The relevant pathways and targets involved in the improvement of DOX resistance in breast cancer cells by IMP were screened and validated by using transcriptome sequencing technology, along with gene ontology (GO) enrichment analyses and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. RESULTS Compared with DOX alone, the combination of IMP and DOX reduced the half inhibitory concentration of DOX on MCF-7/DOX cells from 81.965 μg/mL to 43.170 μg/mL, the reverse fold was 1.90, and the mRNA expression of MDR1 was significantly down-regulated (P<0.05). The results of GO enrichment analyses and KEGG pathway enrichment analyses indicated that the reversal of DOX resistance in breast cancer by IMP was mainly associated with the regulation of biological processes such as detoxification, multiple biological processes, and cell killing. The main pathway involved was the p53 signaling pathway, and the key targets mainly included constitutively photomorphogenic protein 1 (COP1), cyclin E1 (CCNE1), growth arrest and DNA damage-inducible protein 45A E-mail:tangxilan1983@163.com (GADD45A) and GADD45B. The results of the verification experiments showed that compared with DOX group, there was a trend of up-regulation of COP1 mRNA, and significant down- regulation of CCNE1, GADD45A, and GADD45B mRNA expression in IMP+DOX group (P<0.05). CONCLUSIONS The effect of IMP in ameliorating DOX resistance in breast cancer is related to its regulation of COP1, CCNE1, GADD45A and GADD45B targets in the p53 signaling pathway.
8.Mechanism of postoperative abdominal adhesion formation and therapeutic prospect of mesenchymal stem cell exosomes
Xingzhou ZHANG ; Ming WEI ; Guoqiang DONG ; Wei DU ; Yiwen LUO ; Nan ZHANG
Chinese Journal of Tissue Engineering Research 2025;29(1):147-155
BACKGROUND:The formation of postoperative abdominal adhesions is a complicated process,and the prevention of postoperative adhesions is an urgent problem in clinic. OBJECTIVE:To analyze the mechanism of adhesion at cellular and molecular levels,and to provide theoretical basis for the prevention and treatment of adhesion by mesenchymal stem cell exosomes. METHODS:"Abdominal adhesion,pelvic adhesion,postoperative adhesion,epithelial mesenchymal transformation,mesenchymal stem cells,stem cell exosomes,mesenchymal stem cell exosomes"were selected as Chinese and English search terms.We searched PubMed,CNKI,and Chinese biomedical literature and screened relevant articles on postoperative abdominal adhesion and mesenchymal stem cell exosomal intervention published from inception to August 2023.After systematic analysis,54 articles were finally included for the review. RESULTS AND CONCLUSION:(1)Any pathological factors such as peritoneal inflammation,mechanical injury,tissue ischemia,and foreign body implantation cause peritoneal surface injury,resulting in postoperative abdominal adhesion.The formation process of adhesion includes the interaction of peritoneal mesothelial cell repair,inflammatory response,fibrinolytic system,coagulation pathway and other processes,involving a variety of cytokines and signaling pathways.Wnt/β-catenin pathway can induce fibrosis and angiogenesis,and cooperate with transforming growth factor-β/Smads signaling pathway to stimulate fibroblast proliferation and cause peritoneal fibrosis.Meanwhile,nuclear factor-κB signaling pathway up-regulates the expression of cellular inflammatory factors,promotes fibroblast proliferation,and plays a key role in the process of tissue fibrosis.(2)The paracrine function of stem cells is an important direction of molecular intervention in abdominal adhesions based on regenerative medicine.It can participate in a variety of complex cytokines and signaling pathways involved in abdominal adhesions.(3)Compared with traditional methods for treating abdominal adhesions,mesenchymal stem cell exosome has biological activity and is safe to use.Mesenchymal stem cell exosomes without special culture and expansion have lower immunogenicity,longer stability and other advantages,can guide a normal repair and healing through a variety of ways.(4)Mesenchymal stem cell exosome has been proven to be involved in regulating the above processes of adhesion formation in previous studies,showing potential application prospects in clinical studies.However,further clinical studies are needed to explore appropriate treatment options for mesenchymal stem cell exosomes to address the problem of clinical translation.
9.Effects of polylactic acid-glycolic acid copolymer/lysine-grafted graphene oxide nanoparticle composite scaffolds on osteogenic differentiation of MC3T3 cells
Shuangqi YU ; Fan DING ; Song WAN ; Wei CHEN ; Xuejun ZHANG ; Dong CHEN ; Qiang LI ; Zuoli LIN
Chinese Journal of Tissue Engineering Research 2025;29(4):707-712
BACKGROUND:How to effectively promote bone regeneration and bone reconstruction after bone injury has always been a key issue in clinical bone repair research.The use of biological and degradable materials loaded with bioactive factors to treat bone defects has excellent application prospects in bone repair. OBJECTIVE:To investigate the effect of polylactic acid-glycolic acid copolymer(PLGA)composite scaffold modified by lysine-grafted graphene oxide nanoparticles(LGA-g-GO)on osteogenic differentiation and new bone formation. METHODS:PLGA was dissolved in dichloromethane and PLGA scaffold was prepared by solvent evaporation method.PLGA/GO composite scaffolds were prepared by dispersing graphene oxide uniformly in PLGA solution.LGA-g-GO nanoparticles were prepared by chemical grafting method,and the PLGA/LGA-g-GO composite scaffolds were constructed by blending LGA-g-GO nanoparticles at different mass ratios(1%,2%,and 3%)with PLGA.The micromorphology,hydrophilicity,and protein adsorption capacity of scaffolds of five groups were characterized.MC3T3 cells were inoculated on the surface of scaffolds of five groups to detect cell proliferation and osteogenic differentiation. RESULTS AND CONCLUSION:(1)The surface of PLGA scaffolds was smooth and flat under scanning electron microscope,while the surface of the other four scaffolds was rough.The surface roughness of the composite scaffolds increased with the increase of the addition of LGA-g-GO nanoparticles.The water contact angle of PLGA/LGA-g-GO(3%)composite scaffolds was lower than that of the other four groups(P<0.05).The protein adsorption capacity of PLGA/LGA-g-GO(1%,2%,and 3%)composite scaffolds was stronger than PLGA and PLGA/GO scaffolds(P<0.05).(2)CCK-8 assay showed that PLGA/LGA-g-GO(2%,3%)composite scaffold could promote the proliferation of MC3T3 cells.Alkaline phosphatase staining and alizarin red staining showed that the cell alkaline phosphatase activity in PLGA/LGA-g-GO(2%,3%)group was higher than that in the other three groups(P<0.05).The calcium deposition in the PLGA/GO and PLGA/LGA-g-GO(1%,2%,and 3%)groups was higher than that in the PLGA group(P<0.05).(3)In summary,PLGA/LGA-g-GO composite scaffold can promote the proliferation and osteogenic differentiation of osteoblasts,and is conducive to bone regeneration and bone reconstruction after bone injury.
10.Construction of Tax-PC/SDC/PVP-K30 micelles and their protective effect on alcoholic liver injury
Shi-yu ZHANG ; Jing-meng SUN ; Dong-dong LI ; Xin ZHANG ; Jia-hui ZHANG ; Wei-yu ZHANG
Acta Pharmaceutica Sinica 2025;60(2):488-497
Taxifolin (Tax) has been proved to be a medicinal edible substance with protective effects against alcoholic liver injury, however, its poor hydrophilicity and permeability have hindered the clinical application of Tax. In this study, we prepared taxifolin-phosphatidylcholine/sodium deoxycholate/PVP-K30 micells (Tax-MLs). Box-Behnken test was used to obtain the optimal preparation process, and Tax-MLs were characterised by transmission electron microscopy and fourier transform infrared spectroscopy. Physicochemical parameters such as proximate micelle concentration, equilibrium solubility and oil-water partition coefficient were determined, and the release pattern of Tax-MLs was investigated by


Result Analysis
Print
Save
E-mail