1.Research progress in the adsorption of heavy metal ions from wastewater by modified biochar.
Jing HONG ; Yongyong DAI ; Qijun NIE ; Zhiqiang LIAO ; Liangcai PENG ; Dan SUN
Chinese Journal of Biotechnology 2024;40(12):4467-4479
The rapid development of modern industries is accompanied with the aggravating water heavy metal pollution, which poses a potential threat to the aquatic environment and the health of local populations. As an efficient and economical adsorbent, biochar demonstrates the adsorption capacity for heavy metal ions and its adsorption capacity is significantly enhanced after modification. Therefore, biochar can effectively mitigate environmental pollution. By reviewing the existing studies, we summarize the modification methods of biochar, compare the advantages and disadvantages of physical, biological, and chemical modification methods, analyze the effects of modification on the adsorption capacity of biochar for heavy metal ions, and expound the modification mechanism of biochar. On this basis, this article puts forward the future research directions of the application of biochar in treating coexisting pollutants, aiming to provide a reference for the application of biochar in the purification of heavy metal-containing wastewater.
Charcoal/chemistry*
;
Metals, Heavy
;
Adsorption
;
Wastewater/chemistry*
;
Water Pollutants, Chemical/chemistry*
;
Water Purification/methods*
;
Heavy Ions
;
Waste Disposal, Fluid/methods*
2.Spatial Association of Surface Water Quality and Cancer in the Huaihe River Basin.
Jing ZHAO ; Wei HAN ; Xiao-Bo GUO ; Lu-Wen ZHANG ; Fang XUE ; Jing-Mei JIANG
Acta Academiae Medicinae Sinicae 2024;46(6):849-861
Objective To reveal the spatial distribution patterns of key pollutants in the Huaihe River Basin and quantify the risks and burdens of non-gastrointestinal cancers by the grade of pollution,providing targets and data support for enhanced management of water pollution in the Huaihe River Basin. Methods Surface water quality data of the Huaihe River Basin were obtained from the National Surface Water Environmental Quality Monitoring Network(2021).Incidence data of seven cancers were extracted from the 2019 Annual Report of the China Cancer Registry.Random forest and SHapley Additive exPlanations were employed to select key pollutants,and pollution was graded based on the spatial analysis of the Huaihe River Basin.The cancer risks and population attributable fractions were calculated under pollution grades. Results Five key pollutants linked to cancers were identified,including total nitrogen,total phosphorus,chemical oxygen demand,biochemical oxygen demand after 5 days,and arsenic.Pollution was graded into three levels regarding the combined effects of pollutants.Compared with the low pollution areas,high pollution areas showed increased risks of lung cancer(RR=1.26,95%CI:1.06-1.50),breast cancer(female)(RR=1.46,95%CI:1.21-1.77),pancreatic cancer(RR=1.46,95%CI:1.06-2.01),brain cancer(RR=1.44,95%CI:1.05-1.98),and gallbladder cancer(RR=1.60,95%CI:1.03-2.50).The grade of pollution contributed to more than 5% of cases for most cancers above. Conclusions The potential cancer risks and burdens attributed to surface water pollution cannot be overlooked.Addressing this challenge necessitates close collaboration of various stakeholders to strengthen policy development,enhance environmental governance,and implement public health interventions.
Humans
;
China/epidemiology*
;
Rivers/chemistry*
;
Neoplasms/etiology*
;
Water Quality
;
Environmental Monitoring
;
Water Pollutants, Chemical/analysis*
;
Phosphorus/analysis*
;
Spatial Analysis
;
Nitrogen/analysis*
;
Arsenic/analysis*
;
Water Pollution/adverse effects*
;
Female
3.Agricultural Risk Factors Influence Microbial Ecology in Honghu Lake.
Maozhen HAN ; Melissa DSOUZA ; Chunyu ZHOU ; Hongjun LI ; Junqian ZHANG ; Chaoyun CHEN ; Qi YAO ; Chaofang ZHONG ; Hao ZHOU ; Jack A GILBERT ; Zhi WANG ; Kang NING
Genomics, Proteomics & Bioinformatics 2019;17(1):76-90
Agricultural activities, including stock-farming, planting industry, and fish aquaculture, can affect the physicochemical and biological characters of freshwater lakes. However, the effects of pollution producing by agricultural activities on microbial ecosystem of lakes remain unclear. Hence, in this work, we selected Honghu Lake as a typical lake that is influenced by agriculture activities. We collected water and sediment samples from 18 sites, which span a wide range of areas from impacted and less-impacted areas. We performed a geospatial analysis on the composition of microbial communities associated with physicochemical properties and antibiotic pollution of samples. The co-occurrence networks of water and sediment were also built and analyzed. Our results showed that the microbial communities of impacted and less-impacted samples of water were largely driven by the concentrations of TN, TP, NO-N, and NO-N, while those of sediment were affected by the concentrations of Sed-OM and Sed-TN. Antibiotics have also played important roles in shaping these microbial communities: the concentrations of oxytetracycline and tetracycline clearly reflected the variance in taxonomic diversity and predicted functional diversity between impacted and less-impacted sites in water and sediment samples, respectively. Furthermore, for samples from both water and sediment, large differences of network topology structures between impacted and less-impacted were also observed. Our results provide compelling evidence that the microbial community can be used as a sentinel of eutrophication and antibiotics pollution risk associated with agricultural activity; and that proper monitoring of this environment is vital to maintain a sustainable environment in Honghu Lake.
Agriculture
;
Animals
;
Anti-Bacterial Agents
;
analysis
;
China
;
Eutrophication
;
Geologic Sediments
;
chemistry
;
microbiology
;
Lakes
;
chemistry
;
microbiology
;
Microbiota
;
Risk Factors
;
Water Pollutants, Chemical
;
analysis
4.Adsorption of molybdenum by melanin.
Wei CHEN ; Kazunori HASHIMOTO ; Yasuhiro OMATA ; Nobutaka OHGAMI ; Akira TAZAKI ; Yuqi DENG ; Lisa KONDO-IDA ; Atsushi INTOH ; Masashi KATO
Environmental Health and Preventive Medicine 2019;24(1):36-36
BACKGROUND:
Melanin is detectable in various sense organs including the skin in animals. It has been reported that melanin adsorbs toxic elements such as mercury, cadmium, and lead. In this study, we investigated the adsorption of molybdenum, which is widely recognized as a toxic element, by melanin.
METHODS:
Molybdenum level of the mouse skin was measured by inductively coupled plasma mass spectrometry. The pigmentation level of murine skin was digitalized as the L* value by using a reflectance spectrophotometer. An in vitro adsorption assay was performed to confirm the interaction between molybdenum and melanin.
RESULTS:
Our analysis of hairless mice with different levels of skin pigmentation showed that the level of molybdenum increased with an increase in the level of skin pigmentation (L* value). Moreover, our analysis by Spearman's correlation coefficient test showed a strong correlation (r = - 0.9441, p < 0.0001) between L* value and molybdenum level. Our cell-free experiment using the Langmuir isotherm provided evidence for the adsorption of molybdenum by melanin. The maximum adsorption capacity of 1 mg of synthetic melanin for molybdenum was 131 μg in theory.
CONCLUSION
Our in vivo and in vitro results showed a new aspect of melanin as an adsorbent of molybdenum.
Adsorption
;
Animals
;
Melanins
;
chemistry
;
metabolism
;
Mice
;
Mice, Hairless
;
Mice, Transgenic
;
Molybdenum
;
chemistry
;
metabolism
;
pharmacology
;
Skin
;
chemistry
;
drug effects
;
Skin Pigmentation
;
drug effects
;
Water Pollutants, Chemical
;
chemistry
;
metabolism
;
pharmacology
5.Peripheral neuropathy induced by drinking water contaminated with low-dose arsenic in Myanmar.
Hitoshi MOCHIZUKI ; Khin Phyu PHYU ; Myo Nanda AUNG ; Phyo Wai ZIN ; Yasunori YANO ; Moe Zaw MYINT ; Win Min THIT ; Yuka YAMAMOTO ; Yoshitaka HISHIKAWA ; Kyaw Zin THANT ; Masugi MARUYAMA ; Yoshiki KURODA
Environmental Health and Preventive Medicine 2019;24(1):23-23
BACKGROUND:
More than 140 million people drink arsenic-contaminated groundwater. It is unknown how much arsenic exposure is necessary to cause neurological impairment. Here, we evaluate the relationship between neurological impairments and the arsenic concentration in drinking water (ACDW).
PARTICIPANTS AND METHODS:
A cross-sectional study design was employed. We performed medical examinations of 1867 residents in seven villages in the Thabaung township in Myanmar. Medical examinations consisted of interviews regarding subjective neurological symptoms and objective neurological examinations of sensory disturbances. For subjective neurological symptoms, we ascertained the presence or absence of defects in smell, vision, taste, and hearing; the feeling of weakness; and chronic numbness or pain. For objective sensory disturbances, we examined defects in pain sensation, vibration sensation, and two-point discrimination. We analyzed the relationship between the subjective symptoms, objective sensory disturbances, and ACDW.
RESULTS:
Residents with ACDW ≥ 10 parts per billion (ppb) had experienced a "feeling of weakness" and "chronic numbness or pain" significantly more often than those with ACDW < 10 ppb. Residents with ACDW ≥ 50 ppb had three types of sensory disturbances significantly more often than those with ACDW < 50 ppb. In children, there was no significant association between symptoms or signs and ACDW.
CONCLUSION
Subjective symptoms, probably due to peripheral neuropathy, occurred at very low ACDW (around 10 ppb). Objective peripheral nerve disturbances of both small and large fibers occurred at low ACDW (> 50 ppb). These data suggest a threshold for the occurrence of peripheral neuropathy due to arsenic exposure, and indicate that the arsenic concentration in drinking water should be less than 10 ppb to ensure human health.
Adolescent
;
Adult
;
Arsenic
;
analysis
;
toxicity
;
Cross-Sectional Studies
;
Dietary Exposure
;
adverse effects
;
Dose-Response Relationship, Drug
;
Drinking Water
;
adverse effects
;
chemistry
;
Female
;
Groundwater
;
chemistry
;
Humans
;
Male
;
Middle Aged
;
Myanmar
;
epidemiology
;
Peripheral Nervous System Diseases
;
chemically induced
;
epidemiology
;
physiopathology
;
Sensation Disorders
;
chemically induced
;
epidemiology
;
physiopathology
;
Water Pollutants, Chemical
;
analysis
;
toxicity
;
Young Adult
6.Facile Synthesis of the Magnetic Metal Organic Framework Fe3O4@UiO-66-NH2 for Separation of Strontium.
Liang Liang YIN ; Xiang Yin KONG ; Yao ZHANG ; Yan Qin JI
Biomedical and Environmental Sciences 2018;31(6):483-488
A magnetic metal organic framework (MMOF) was synthesized and used to separate Sr2+ in aqueous solution. The shape and structure of prepared Fe3O4@UiO-66-NH2 were characterized, and the absorbed concentration of strontium was determined through inductively coupled plasma mass spectrometry. The results indicated that Fe3O4 and UiO-66-NH2 combined through chemical bonding. The experimental adsorption results for separation of Sr2+ in aqueous solution indicated that the adsorption of Sr2+ to Fe3O4@UiO-66-NH2 increased drastically from pH 11 to pH 13. The adsorption isotherm model indicated that the adsorption of Sr2+ conformed to the Freundlich isotherm model (R2 = 0.9919). The MMOF thus inherited the superior qualities of magnetic composites and metal organic frameworks, and can easily be separated under an external magnetic field. This MMOF thus has potential applications as a magnetic adsorbent for low level radionuclide 90Sr.
Adsorption
;
Ferrosoferric Oxide
;
chemistry
;
Hydrogen-Ion Concentration
;
Metal-Organic Frameworks
;
chemical synthesis
;
chemistry
;
Models, Theoretical
;
Nanoparticles
;
chemistry
;
Strontium
;
analysis
;
Surface Properties
;
Water Pollutants, Radioactive
;
analysis
;
Water Purification
;
methods
7.Melanin-embedded materials effectively remove hexavalent chromium (Cr) from aqueous solution.
An Manh CUONG ; Nguyen Thi LE NA ; Pham Nhat THANG ; Trinh Ngoc DIEP ; Ly Bich THUY ; Nguyen Lai THANH ; Nguyen Dinh THANG
Environmental Health and Preventive Medicine 2018;23(1):9-9
BACKGROUND:
Currently, it is recognized that water polluted with toxic heavy metal ions may cause serious effects on human health. Therefore, the development of new materials for effective removal of heavy metal ions from water is still a widely important area. Melanin is being considered as a potential material for removal of heavy metal from water.
METHODS:
In this study, we synthesized two melanin-embedded beads from two different melanin powder sources and named IMB (Isolated Melanin Bead originated from squid ink sac) and CMB (Commercial Melanin Bead originated from sesame seeds). These beads were of globular shape and 2-3 mm in diameter. We investigated and compared the sorption abilities of these two bead materials toward hexavalent-chromium (Cr) in water. The isotherm sorption curves were established using Langmuir and Freundlich models in the optimized conditions of pH, sorption time, solid/liquid ratio, and initial concentration of Cr. The FITR analysis was also carried out to show the differences in surface properties of these two beads.
RESULTS:
The optimized conditions for isotherm sorption of Cr on IMB/CMB were set at pH values of 2/2, sorption times of 90/300 min, and solid-liquid ratios of 10/20 mg/mL. The maximum sorption capacities calculated based on the Langmuir model were 19.60 and 6.24 for IMB and CMB, respectively. However, the adsorption kinetic of Cr on the beads fitted the Freundlich model with R values of 0.992 for IMB and 0.989 for CMB. The deduced Freundlich constant, 1/n, in the range of 0.2-0.8 indicated that these beads are good adsorption materials. In addition, structure analysis data revealed great differences in physical and chemical properties between IMB and CMB. Interestingly, FTIR analysis results showed strong signals of -OH (3295.35 cm) and -C=O (1608.63 cm) groups harboring on the IMB but not CMB. Moreover, loading of Cr on the IMB caused a shift of broad peaks from 3295.35 cm and 1608.63 cm to 3354.21 cm and 1597.06 cm, respectively, due to -OH and -C=O stretching.
CONCLUSIONS
Taken together, our study suggests that IMB has great potential as a bead material for the elimination of Cr from aqueous solutions and may be highly useful for water treatment applications.
Adsorption
;
Chromium
;
chemistry
;
Kinetics
;
Melanins
;
chemistry
;
Waste Disposal, Fluid
;
methods
;
Water Pollutants, Chemical
;
chemistry
;
Water Pollution, Chemical
;
prevention & control
;
Water Purification
;
methods
8.Effects of different external carbon sources and electron acceptors on interactions between denitrification and phosphorus removal in biological nutrient removal processes.
Xiang HU ; Dominika SOBOTKA ; Krzysztof CZERWIONKA ; Qi ZHOU ; Li XIE ; Jacek MAKINIA
Journal of Zhejiang University. Science. B 2018;19(4):305-316
The effects of two different external carbon sources (acetate and ethanol) and electron acceptors (dissolved oxygen, nitrate, and nitrite) were investigated under aerobic and anoxic conditions with non-acclimated process biomass from a full-scale biological nutrient removal-activated sludge system. When acetate was added as an external carbon source, phosphate release was observed even in the presence of electron acceptors. The release rates were 1.7, 7.8, and 3.5 mg P/(g MLVSS·h) (MLVSS: mixed liquor volatile suspended solids), respectively, for dissolved oxygen, nitrate, and nitrite. In the case of ethanol, no phosphate release was observed in the presence of electron acceptors. Results of the experiments with nitrite showed that approximately 25 mg NO2-N/L of nitrite inhibited anoxic phosphorus uptake regardless of the concentration of the tested external carbon sources. Furthermore, higher denitrification rates were obtained with acetate (1.4 and 0.8 mg N/(g MLVSS·h)) compared to ethanol (1.1 and 0.7 mg N/ (g MLVSS·h)) for both anoxic electron acceptors (nitrate and nitrite).
Biomass
;
Bioreactors
;
Carbon/chemistry*
;
Denitrification
;
Electrons
;
Nitrates
;
Nitrites
;
Oxygen
;
Phosphates
;
Phosphorus/chemistry*
;
Sewage
;
Waste Disposal, Fluid/methods*
;
Wastewater
;
Water Pollutants, Chemical
;
Water Purification/methods*
9.Blood Pressure Associated with Arsenic Methylation and Arsenic Metabolism Caused by Chronic Exposure to Arsenic in Tube Well Water.
Bing Gan WEI ; Bi Xiong YE ; Jiang Ping YU ; Lin Sheng YANG ; Hai Rong LI ; Ya Juan XIA ; Ke Gong WU
Biomedical and Environmental Sciences 2017;30(5):334-342
OBJECTIVEThe effects of arsenic exposure from drinking water, arsenic metabolism, and arsenic methylation on blood pressure (BP) were observed in this study.
METHODSThe BP and arsenic species of 560 participants were determined. Logistic regression analysis was applied to estimate the odds ratios of BP associated with arsenic metabolites and arsenic methylation capability.
RESULTSBP was positively associated with cumulative arsenic exposure (CAE). Subjects with abnormal diastolic blood pressure (DBP), systolic blood pressure (SBP), and pulse pressure (PP) usually had higher urinary iAs (inorganic arsenic), MMA (monomethylated arsenic), DMA (dimethylated arsenic), and TAs (total arsenic) than subjects with normal DBP, SBP, and PP. The iAs%, MMA%, and DMA% differed slightly between subjects with abnormal BP and those with normal BP. The PMI and SMI were slightly higher in subjects with abnormal PP than in those with normal PP.
CONCLUSIONOur findings suggest that higher CAE may elevate BP. Males may have a higher risk of abnormal DBP, whereas females have a higher risk of abnormal SBP and PP. Higher urinary iAs may increase the risk of abnormal BP. Lower PMI may elevate the BP. However, higher SMI may increase the DBP and SBP, and lower SMI may elevate the PP.
Adult ; Arsenic ; analysis ; metabolism ; toxicity ; Blood Pressure ; drug effects ; China ; Drinking Water ; analysis ; chemistry ; Environmental Exposure ; Female ; Humans ; Male ; Methylation ; drug effects ; Middle Aged ; Water Pollutants, Chemical ; analysis ; toxicity ; Young Adult
10.Hair Mercury Levels and Their Relationship with Seafood Consumption among Preschool Children in Shanghai.
Jin YAN ; Zhen Yan GAO ; Ju WANG ; Chong Huai YAN
Biomedical and Environmental Sciences 2017;30(3):220-223
Mercury is a global pollutant. Children are vulnerable to environmental toxicants. Seafood consumption is a major source of methylmercury exposure. In order to ascertain children's mercury exposure levels and study their relationship with seafood consumption, we conducted a cross-sectional study among preschool children in Shanghai. According to our data, the geometric mean of the mercury levels in children's hair was 191.9 (95% CI: 181.8, 202.4) μg/kg. These results indicate that high income may be a predictor of elevated mercury levels in children's hair. Intake of marine fish, especially tuna and pomfret, was documented in our study and found to increase the risk of high mercury levels. Frequency of fish consumption was positively related with hair mercury levels. Our study is the first to provide baseline data for hair mercury concentration among preschool children in Shanghai.
Child, Preschool
;
China
;
Food Contamination
;
Hair
;
chemistry
;
Humans
;
Mercury
;
chemistry
;
metabolism
;
Seafood
;
analysis
;
Socioeconomic Factors
;
Water Pollutants, Chemical
;
chemistry

Result Analysis
Print
Save
E-mail