1.Regulation of kidney on potassium balance and its clinical significance.
Qiong-Hong XIE ; Chuan-Ming HAO
Acta Physiologica Sinica 2023;75(2):216-230
Virtually all of the dietary potassium intake is absorbed in the intestine, over 90% of which is excreted by the kidneys regarded as the most important organ of potassium excretion in the body. The renal excretion of potassium results primarily from the secretion of potassium by the principal cells in the aldosterone-sensitive distal nephron (ASDN), which is coupled to the reabsorption of Na+ by the epithelial Na+ channel (ENaC) located at the apical membrane of principal cells. When Na+ is transferred from the lumen into the cell by ENaC, the negativity in the lumen is relatively increased. K+ efflux, H+ efflux, and Cl- influx are the 3 pathways that respond to Na+ influx, that is, all these 3 pathways are coupled to Na+ influx. In general, Na+ influx is equal to the sum of K+ efflux, H+ efflux, and Cl- influx. Therefore, any alteration in Na+ influx, H+ efflux, or Cl- influx can affect K+ efflux, thereby affecting the renal K+ excretion. Firstly, Na+ influx is affected by the expression level of ENaC, which is mainly regulated by the aldosterone-mineralocorticoid receptor (MR) pathway. ENaC gain-of-function mutations (Liddle syndrome, also known as pseudohyperaldosteronism), MR gain-of-function mutations (Geller syndrome), increased aldosterone levels (primary/secondary hyperaldosteronism), and increased cortisol (Cushing syndrome) or deoxycorticosterone (hypercortisolism) which also activate MR, can lead to up-regulation of ENaC expression, and increased Na+ reabsorption, K+ excretion, as well as H+ excretion, clinically manifested as hypertension, hypokalemia and alkalosis. Conversely, ENaC inactivating mutations (pseudohypoaldosteronism type 1b), MR inactivating mutations (pseudohypoaldosteronism type 1a), or decreased aldosterone levels (hypoaldosteronism) can cause decreased reabsorption of Na+ and decreased excretion of both K+ and H+, clinically manifested as hypotension, hyperkalemia, and acidosis. The ENaC inhibitors amiloride and Triamterene can cause manifestations resembling pseudohypoaldosteronism type 1b; MR antagonist spironolactone causes manifestations similar to pseudohypoaldosteronism type 1a. Secondly, Na+ influx is regulated by the distal delivery of water and sodium. Therefore, when loss-of-function mutations in Na+-K+-2Cl- cotransporter (NKCC) expressed in the thick ascending limb of the loop and in Na+-Cl- cotransporter (NCC) expressed in the distal convoluted tubule (Bartter syndrome and Gitelman syndrome, respectively) occur, the distal delivery of water and sodium increases, followed by an increase in the reabsorption of Na+ by ENaC at the collecting duct, as well as increased excretion of K+ and H+, clinically manifested as hypokalemia and alkalosis. Loop diuretics acting as NKCC inhibitors and thiazide diuretics acting as NCC inhibitors can cause manifestations resembling Bartter syndrome and Gitelman syndrome, respectively. Conversely, when the distal delivery of water and sodium is reduced (e.g., Gordon syndrome, also known as pseudohypoaldosteronism type 2), it is manifested as hypertension, hyperkalemia, and acidosis. Finally, when the distal delivery of non-chloride anions increases (e.g., proximal renal tubular acidosis and congenital chloride-losing diarrhea), the influx of Cl- in the collecting duct decreases; or when the excretion of hydrogen ions by collecting duct intercalated cells is impaired (e.g., distal renal tubular acidosis), the efflux of H+ decreases. Both above conditions can lead to increased K+ secretion and hypokalemia. In this review, we focus on the regulatory mechanisms of renal potassium excretion and the corresponding diseases arising from dysregulation.
Humans
;
Bartter Syndrome/metabolism*
;
Pseudohypoaldosteronism/metabolism*
;
Potassium/metabolism*
;
Aldosterone/metabolism*
;
Hypokalemia/metabolism*
;
Gitelman Syndrome/metabolism*
;
Hyperkalemia/metabolism*
;
Clinical Relevance
;
Epithelial Sodium Channels/metabolism*
;
Kidney Tubules, Distal/metabolism*
;
Sodium/metabolism*
;
Hypertension
;
Alkalosis/metabolism*
;
Water/metabolism*
;
Kidney/metabolism*
2.Artesunate alleviates hypoxic-ischemic brain damage in neonatal rats by inhibiting NLRP3 inflammasome activation and inflammatory cytokine secretion.
Yinli CAO ; Yazhou SUN ; Qingyang CUI ; Xiaojing HE ; Zhenzhen LI
Chinese Journal of Cellular and Molecular Immunology 2023;39(5):410-415
Objective To investigate the protective effect of artesunate on hypoxic-ischemic brain damage (HIBD) and its mechanism in neonatal rats. Methods 7-day-old neonatal SD rats were randomly divided into sham operation group, model group, artesunate 5 mg/kg group, artesunate 10 mg/kg group, artesunate 20 mg/kg group and dexamethasone 6 mg/kg group, with 18 rats in each group. HIBD models were established in groups except for the sham operation group. The sham operation group only needed to separate the left common carotid artery without ligation and nitrogen-oxygen mixed gas ventilation. Each group was injected with drug intraperitoneally right after surgery and the rats in the sham operation group and the model group were injected with an equal volume of normal saline (once a day for a total of 5 times). One hour after the last injection, the rats in each group were scored for neurological defects. After the rats were sacrificed, the brain water content was measured and the pathological changes of the brain tissues of rats were observed. Terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) was used to detect the neuronal cell apoptosis, and ELISA was applied to detect the levels of IL-1β, IL-6 and TNF-α in brain tissues and peripheral blood of each group of rats. Western blot analysis was adopted to detect the protein expression levels of NLR family pyrin domain containing 3 (NLRP3), apoptosis-associated speck-like protein containing CARD (ASC) and caspase-1 in the rats brain tissues of each group. Results Compared with the model group, the neurological deficit score was decreased; the pathological damage of brain tissues was relieved; the brain water content was significantly reduced; the apoptosis number of hippocampal neurons was decreased significantly; the levels of IL-1β, IL-6 and TNF-α in brain tissues and peripheral blood were significantly reduced; the protein expression levels of NLRP3, ASC and caspase-1 were significantly lowered in the middle-dose and high-dose artesunate groups and the dexamethasone group. Conclusion Artesunate can improve the neurological function, relieve the brain damage, and alleviate the brain edema in neonatal rats with HIBD. It can protect the HIBD, which may be related to the inhibition of NLRP3 inflammasome activation and reduction of inflammatory cytokine secretion.
Animals
;
Rats
;
Animals, Newborn
;
Artesunate/pharmacology*
;
Brain/metabolism*
;
Caspases/metabolism*
;
Dexamethasone
;
Hypoxia-Ischemia, Brain/pathology*
;
Inflammasomes
;
Interleukin-6/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Rats, Sprague-Dawley
;
Tumor Necrosis Factor-alpha/metabolism*
;
Water/metabolism*
3.Developmental effects of TCIPP and TnBP on zebrafish (Danio rerio) embryos.
Shu Yi ZHANG ; Shao Ping ZHANG ; Zi Jin SHAO ; Yuan Zheng FU ; Wen GU ; Hong ZHI ; Jian KONG ; Fu Chang DENG ; Wen Yan YAN ; Juan LIU ; Chao WANG ; Song TANG
Chinese Journal of Preventive Medicine 2023;57(5):693-700
Objective: To investigate the toxicity of tris (2-chloropropyl) phosphate (TCIPP) and tributyl phosphate (TnBP) on the growth and development of zebrafish embryos, as well as to explore the underlying mechanisms at the transcriptional level. Methods: With zebrafish as a model, two hpf zebrafish embryos were exposed to TCIPP and TnBP (0.1, 1, 10, 100, 500, and 1 000 μmol/L) using the semi-static method, and their rates of lethality and hatchability were determined. The transcriptome changes of 120 hpf juvenile zebrafish exposed to environmentally relevant concentrations of 0.1 and 1 μmol/L were measured. Results: The 50% lethal concentrations (LC50) of TCIPP and TnBP for zebrafish embryos were 155.30 and 27.62 μmol/L (96 hpf), 156.5 and 26.05 μmol/L (120 hpf), respectively. The 72 hpf hatching rates of TCIPP (100 μmol/L) and TnBP (10 μmol/L) were (23.33±7.72)% and (91.67±2.97)%, which were significantly decreased compared with the control group (P<0.05). Transcriptome analysis showed that TnBP had more differential genes (DEGs) than TCIPP, with a dose-response relationship. These DEGs were enriched in 32 pathways in total, including those involved in oxidative stress, energy metabolism, lipid metabolism, and nuclear receptor-related pathways, using the IPA pathway analysis. Among them, three enriched pathways overlapped between TCIPP and TnBP, including TR/RXR activation and CAR/RXR activation. Additionally, DEGs were also mapped onto pathways of LXR/RXR activation and oxidative stress for TnBP exposure only. Conclusion: Both TCIPP and TnBP have growth and developmental toxicities in zebrafish embryos, with distinct biomolecular mechanisms, and TnBP has a stronger effect than TCIPP.
Animals
;
Zebrafish/metabolism*
;
Embryo, Nonmammalian/metabolism*
;
Transcriptome
;
Oxidative Stress
;
Water Pollutants, Chemical/metabolism*
4.The toxicity of ZnO and CuO nanoparticles on biological wastewater treatment and its detoxification: a review.
Yuran YANG ; Can ZHANG ; Zhenlun LI
Chinese Journal of Biotechnology 2023;39(3):1026-1039
The wide use of ZnO and CuO nanoparticles in research, medicine, industry, and other fields has raised concerns about their biosafety. It is therefore unavoidable to be discharged into the sewage treatment system. Due to the unique physical and chemical properties of ZnO NPs and CuO NPs, it may be toxic to the members of the microbial community and their growth and metabolism, which in turn affects the stable operation of sewage nitrogen removal. This study summarizes the toxicity mechanism of two typical metal oxide nanoparticles (ZnO NPs and CuO NPs) to nitrogen removal microorganisms in sewage treatment systems. Furthermore, the factors affecting the cytotoxicity of metal oxide nanoparticles (MONPs) are summarized. This review aims to provide a theoretical basis and support for the future mitigating and emergent treatment of the adverse effects of nanoparticles on sewage treatment systems.
Wastewater/toxicity*
;
Sewage/chemistry*
;
Zinc Oxide/chemistry*
;
Waste Disposal, Fluid
;
Nanoparticles/chemistry*
;
Metal Nanoparticles/chemistry*
;
Nitrogen/metabolism*
;
Water Purification
5.Variation and interaction mechanism between active components in Rheum officinale and rhizosphere soil microorganisms under drought stress.
Feng-Pu XIE ; Nan WANG ; Jing GAO ; Gang ZHANG ; Zhong-Xing SONG ; Yuan-Yuan LI ; Ya-Li ZHANG ; Duo-Yi WANG ; Rui LI ; Mi-Mi LIU ; Zhi-Shu TANG
China Journal of Chinese Materia Medica 2023;48(6):1498-1509
To explore the changes and the reaction mechanisms between soil microecological environment and the content of secon-dary metabolites of plants under water deficit, this study carried out a pot experiment on the 3-leaf stage seedlings of Rheum officinale to analyze their response mechanism under different drought gradients(normal water supply, mild, moderate, and severe drought). The results indicated that the content of flavonoids, phenols, terpenoids, and alkaloids in the root of R. officinale varied greatly under drought stresses. Under mild drought stress, the content of substances mentioned above was comparatively high, and the content of rutin, emodin, gallic acid, and(+)-catechin hydrate in the root significantly increased. The content of rutin, emodin, and gallic acid under severe drought stress was significantly lower than that under normal water supply. The number of species, Shannon diversity index, richness index, and Simpson index of bacteria in the rhizosphere soil were significantly higher than those in blank soil, and the number of microbial species and richness index decreased significantly with the aggravation of drought stresses. In the context of water deficit, Cyanophyta, Firmicutes, Actinobacteria, Chloroflexi, Gemmatimonadetes, Streptomyces, and Actinomyces were the dominant bacteria in the rhizosphere of R. officinale. The relative content of rutin and emodin in the root of R. officinale was positively correlated with the relative abundance of Cyanophyta and Firmicutes, and the relative content of(+)-catechin hydrate and(-)-epicatechin gallate was positively correlated with the relative abundance of Bacteroidetes and Firmicutes. In conclusion, appropriate drought stress can increase the content of secondary metabolites of R. officinale from physiological induction and the increase in the association with beneficial microbe.
Rhizosphere
;
Rheum
;
Droughts
;
Soil
;
Catechin
;
Emodin
;
Bacteria/metabolism*
;
Water/metabolism*
;
Firmicutes
;
Soil Microbiology
6.Mechanism of Jiming Powder in ameliorating heart failure with preserved ejection fraction based on metabolomics.
Xiao-Qi WEI ; Xin-Yi FAN ; Hai-Yin PU ; Shuai LI ; Jia-Yang TANG ; Kuo GAO ; Fang-He LI ; Xue YU ; Shu-Zhen GUO
China Journal of Chinese Materia Medica 2023;48(17):4747-4760
In this study, untargeted metabolomics was conducted using the liquid chromatography-tandem mass spectrometry(LC-MS/MS) technique to analyze the potential biomarkers in the plasma of mice with heart failure with preserved ejection fraction(HFpEF) induced by a high-fat diet(HFD) and nitric oxide synthase inhibitor(Nω-nitro-L-arginine methyl ester hydrochloride, L-NAME) and explore the pharmacological effects and mechanism of Jiming Powder in improving HFpEF. Male C57BL/6N mice aged eight weeks were randomly assigned to a control group, a model group, an empagliflozin(10 mg·kg~(-1)·d~(-1)) group, and high-and low-dose Jiming Powder(14.3 and 7.15 g·kg~(-1)·d~(-1)) groups. Mice in the control group were fed on a low-fat diet, and mice in the model group and groups with drug intervention were fed on a high-fat diet. All mice had free access to water, with water in the model group and Jiming Powder groups being supplemented with L-NAME(0.5 g·L~(-1)). Drugs were administered on the first day of modeling, and 15 weeks later, blood pressure and cardiac function of the mice in each group were measured. Heart tissues were collected for hematoxylin-eosin(HE) staining to observe pathological changes and Masson's staining to observe myocardial collagen deposition. Untargeted metabolomics analysis was performed on the plasma collected from mice in each group, and metabolic pathway analysis was conducted using MetaboAnalyst 5.0. The results showed that the blood pressure was significantly lower and the myocardial concentric hypertrophy and left ventricular diastolic dysfunction were significantly improved in both the high-dose and low-dose Jiming Powder groups as compared with those in the model group. HE and Masson staining showed that both high-dose and low-dose Jiming Powder significantly alleviated myocardial fibrosis. In the metabolomics experiment, 23 potential biomarkers were identified and eight strongly correlated metabolic pathways were enriched, including linoleic acid metabolism, histidine metabolism, alpha-linolenic acid metabolism, glycerophospholipid metabolism, purine metabolism, porphyrin and chlorophyll metabolism, arachidonic acid metabolism, and pyrimidine metabolism. The study confirmed the pharmacological effects of Jiming Powder in lowering blood pressure and ameliorating HFpEF and revealed the mechanism of Jiming Powder using the metabolomics technique, providing experimental evidence for the clinical application of Jiming Powder in treating HFpEF and a new perspective for advancing and developing TCM therapy for HFpEF.
Male
;
Mice
;
Animals
;
Heart Failure/metabolism*
;
Powders
;
Stroke Volume/physiology*
;
Chromatography, Liquid
;
NG-Nitroarginine Methyl Ester/therapeutic use*
;
Mice, Inbred C57BL
;
Tandem Mass Spectrometry
;
Metabolomics
;
Biomarkers
;
Water
7.Linderae Radix water extract treats diarrhea-predominant irritable bowel syndrome in rats: a serum metabolomics study.
Tao LIU ; Meng-Ling WU ; Guo-Yan DENG ; Yang HE ; Yi-Ran HE ; Gui-Ming DENG ; Lin-Qi OUYANG
China Journal of Chinese Materia Medica 2023;48(19):5356-5364
This study aims to investigate the mechanism of Linderae Radix water extract(LRWE) in the prevention and treatment of diarrhea-predominant irritable bowel syndrome(IBS-D) based on serum metabolomics. Eighteen 2-week-old male SD rats were randomized into control, IBS-D model, and LRWE groups. The rats in other groups except the control group received gavage of senna concentrate combined with restraint stress for the modeling of IBS-D. The rats in the LRWE group were administrated with LRWE(5.4 g·kg~(-1)) by gavage, and those in the control and IBS-D model groups with an equal volume of distilled water for a total of 14 days. The visceral sensitivity was evaluated by the abdominal withdrawal reflex(AWR) score, and the degree of diarrhea was assessed by the fecal water content(FWC). The morphological changes of the colon and the morphology and number of goblet cells were observed by hematoxylin-eosin(HE) and periodic acid-schiff(PAS) staining, respectively. Ultra-high performance liquid chromatography-tandem mass spectrometry(UPLC-MS/MS) was used for the screening of the potential biomarkers in the rat serum and their related metabolic pathways. The results showed that LRWE reduced the AWR score, decreased FWC, and alleviated visceral sensitivity and diarrhea symptoms in IBS-D rats. HE and PAS staining showed that LRWE mitigated low-grade intestinal inflammation and increased the number of mature secretory goblet cells in the colonic epithelium of IBS-D rats. A total of 25 potential biomarkers of LRWE in treating IBS-D were screened out in this study, which were mainly involved in riboflavin, tryptophan, glycine, serine and threonine metabolism, glyoxylate and dicarboxylate metabolism, and cysteine and methionine metabolism. The regulatory effects were the most significant on the riboflavin and tryptophan metabolism pathways. LRWE may alleviate the visceral hypersensitivity by promoting energy metabolism and amino acid metabolism, enhancing intestinal barrier function, and improving intestinal immune function in IBS-D rats.
Rats
;
Male
;
Animals
;
Irritable Bowel Syndrome/metabolism*
;
Water
;
Chromatography, Liquid
;
Tryptophan
;
Rats, Sprague-Dawley
;
Tandem Mass Spectrometry
;
Diarrhea/drug therapy*
;
Biomarkers
;
Riboflavin
8.Effect of Biantie pretreatment on serum level of PHD2/HIF-1α and brain tissue damage in rats during acute hypobaric hypoxia exposure.
Xiao-Ya LI ; Chun-Hua WU ; Ying-Jie YAN ; Deng-Hui WANG ; Meng-Jie WANG ; Zhong-Wei HOU
Chinese Acupuncture & Moxibustion 2022;42(11):1278-1284
OBJECTIVE:
To observe the effect of Biantie (bian stone plaste) pretreatment on serum level of prolyl hydroxylase domain 2 (PHD2) and hypoxia-inducible factor-1α (HIF-1α) in rats with acute hypobaric hypoxia induced-brain injury, and to explore the possible mechanism of Biantie on preventing brain injury at high altitude.
METHODS:
Forty-five male SD rats were randomly divided into a blank group, a model group, a Biantie group, a medication group and a Biantie+inhibitor group, 9 rats in each group. The rats in the Biantie group the and the Biantie+inhibitor group were pretreated with Biantie at "Taiyuan" (LU 9), "Neiguan" (PC 6) and "Renying" (ST 9), 2 h each time, once a day; the rats in the medication group were treated with intragastric administration of rhodiola capsule solution (280 mg/kg) for 14 d; the rats in the Biantie+inhibitor group were intraperitoneally injected with the PHD inhibitor dimethyloxalyl glycine (DMOG) at a dose of 40 mg/kg 24 h before the establishment of the model. After the intervention, except for the blank group, the rats in the remaining 4 groups were placed in the oxygen chamber to simulate a high-altitude environment to establish the acute hypobaric hypoxia brain injury model. The arterial blood-gas analysis indexes [blood oxygen saturation (SaO2), lactic acid (Lac), blood sodium (Na+), blood potassium (K+)] and brain water content were detected in each group; the histomorphology of cerebral cortex was observed by HE staining; the serum levels of PHD2 and HIF-1α as well as vascular endothelial growth factor (VEGF) were detected by ELISA; the VEGF protein expression in brain tissue was detected by Western blot; the VEGF mRNA expression in brain tissue was detected by real-time fluorescent quantitative PCR.
RESULTS:
Compared with the blank group, the levels of SaO2 and Na+ in the model group were decreased (P<0.05), while the levels of Lac and K+ as well as the water content of brain tissue were increased (P<0.05). Compared with the model group, the level of SaO2 in the Biantie group and the medication group was increased (P<0.05), while the levels of Lac, K+ and the water content of brain tissue were decreased (P<0.05); the level of Na+ in the Biantie group was increased (P<0.05). Compared with the Biantie group, the level of SaO2 in the Biantie+inhibitor group was decreased (P<0.05), and the level of Lac and the water content of brain tissue were increased (P<0.05). In the model group, the cortical tissue cells were loose and disordered, the cortical blood vessels were dilated, and the cells were obviously swollen; the anoxic injury in the Biantie group and the medication group was lighter, and the anoxic injury in the Biantie+inhibitor group was more obvious than that in the Biantie group. Compared with the blank group, the serum PHD2 content in the model group was decreased and the HIF-1α content was increased (P<0.05), and the content of VEGF in serum and VEGF protein and mRNA expressions in brain were increased (P<0.05). Compared with the model group, the content of PHD2 in serum in the Biantie group and the medication group was increased (P<0.05), and the level of HIF-1α was decreased (P<0.05), and the content of VEGF in serum as well as VEGF protein and mRNA expressions in brain were decreased (P<0.05). Compared with the Biantie group, the serum PHD2 content in the Biantie+inhibitor group was decreased and HIF-1α level were increased (P<0.05), and the content of VEGF in serum as well as VEGF mRNA expression in brain were increased (P<0.05).
CONCLUSION
Biantie at "Taiyuan" (LU 9), "Neiguan" (PC 6) and "Renying" (ST 9) could regulate serum PHD2/HIF-1α to down-regulate VEGF expression, reduce brain edema and enhance anti-hypoxia ability, so as to achieve the purpose of preventing brain injury at high altitude.
Animals
;
Rats
;
Male
;
Prolyl Hydroxylases/metabolism*
;
Hypoxia-Inducible Factor 1, alpha Subunit/metabolism*
;
Vascular Endothelial Growth Factor A/metabolism*
;
Rats, Sprague-Dawley
;
Procollagen-Proline Dioxygenase/metabolism*
;
Brain Injuries
;
Brain/metabolism*
;
RNA, Messenger
;
Water
9.Activation of the adenosine A2A receptor at the acute stage of moderate traumatic brain injury enhances the neuroprotective effects of oxaloacetate.
Nan YANG ; Zhi-Zhong HUANG ; Si-Wei TAN ; Xing CHEN ; Yan PENG ; Yuan-Guo ZHOU ; Ya-Lei NING
Acta Physiologica Sinica 2022;74(4):505-512
The purpose of the present study was to investigate the effect of glutamate scavenger oxaloacetate (OA) combined with CGS21680, an adenosine A2A receptor (A2AR) agonist, on acute traumatic brain injury (TBI), and to elucidate the underlying mechanisms. C57BL/6J mice were subjected to moderate-level TBI by controlled cortical impact, and then were treated with OA, CGS21680, or OA combined with CGS21680 at acute stage of TBI. At 24 h post TBI, neurological severity score, brain water content, glutamate concentration in cerebrospinal fluid (CSF), mRNA and protein levels of IL-1β and TNF-α, mRNA level and activity of glutamate oxaloacetate aminotransferase (GOT), and ATP level of brain tissue were detected. The results showed that neurological deficit, brain water content, glutamate concentration in CSF, and the inflammatory cytokine IL-1β and TNF-α production were exacerbated in CGS21680 treated mice. Administrating OA suppressed the rise of both glutamate concentration in CSF and brain water content, and elevated the ATP level of cerebral tissue. More interestingly, neurological deficit, brain edema, glutamate concentration, IL-1β and TNF-α levels were ameliorated significantly in mice treated with OA combined with CGS21680. The combined treatment exhibited better therapeutic effects than single OA treatment. We also observed that GOT activity was enhanced in single CGS21680 treatment group, and both the GOT mRNA level and GOT activity were up-regulated in early-stage combined treatment group. These results suggest that A2AR can improve the efficiency of GOT and potentiate the ability of OA to metabolize glutamate. This may be the mechanism that A2AR activation in combination group augmented the neuroprotective effect of OA rather than aggravated the brain damages. Taken together, the present study provides a new insight for the clinical treatment of TBI with A2AR agonists and OA.
Adenosine A2 Receptor Agonists/therapeutic use*
;
Adenosine Triphosphate
;
Animals
;
Brain Injuries/metabolism*
;
Brain Injuries, Traumatic/metabolism*
;
Glutamic Acid
;
Mice
;
Mice, Inbred C57BL
;
Neuroprotective Agents/therapeutic use*
;
Oxaloacetic Acid/therapeutic use*
;
RNA, Messenger
;
Receptor, Adenosine A2A/metabolism*
;
Tumor Necrosis Factor-alpha/genetics*
;
Water
10.The effects of different herbal compound and extracts from different extraction methods on hypoxia tolerance in mice.
Wan-Yu LI ; Hui-Ping MA ; Qu-Huan MA ; Xiao-Feng SHI ; Yan-Mei LU ; Peng-Peng ZHANG ; Jia-Xu ZHANG ; Xue-Feng DONG ; Qian-Nju YE
Chinese Journal of Applied Physiology 2022;38(3):199-204
Objective: To investigate the effects of different prescription compositions of traditional Chinese medicine and its different extraction methods of compound formula extracts on hypoxia tolerance in mice, in order to preferably select their prescription compositions and preparation extraction methods. Methods: Male BALB/c mice were randomly divided into 6 groups: blank control group, compound danshen group, compound Rhodiola Rosea alcohol-water extract group (Rhodiola rosea, Astragali Radix, Polygonati Rhizoma, Lycii Fructus), compound Rhodiola Rosea water extract group, compound Astragalus alcohol-water extract group (Astragali Radix, Polygonati Rhizoma, Lycii Fructus) and compound Astragalus water extract group, 30 mice in each group. Each group was administered continuously by gavage for 10 d. The blank group was gavaged with sterilized injection water. The mice in the other groups were treated with 0.15 g/kg of compound danshen, 3 g/kg of compound Rhodiola Rosea alcohol-water extract or water extract, and 1.7 g/kg of compound Astragalus alcohol-water extract or water extract, respectively. Each group was subjected to normobaric hypoxia tolerance test, sodium nitrite toxicity survival test and acute cerebral ischemia-hypoxia test 1 h after the last gavage, and the mice brain tissues were used to determine the activity of antioxidant enzymes and metabolites related to oxidative stress. Results: Compared with the blank control group, in normobaric hypoxia tolerance test, the survival time of mice in the compound danshen group and the compound Astragalus alcohol-water extract group and water extraction group was prolonged significantly (P<0.01), and the number of open-mouth gasping after cerebral ischemia and hypoxia was increased significantly (P<0.05). There was no statistical difference in survival time after sodium nitrite injection in each group. Compared with the blank control group, the activities of T-AOC, SOD, GSH and CAT were increased significantly (P<0.05, P<0.01) and the content of MDA was decreased significantly (P<0.01) in the compound Astragalus water extract group. Compared with the compound danshen group, the activities of SOD, CAT and GSH were increased significantly (P<0.01, P<0.05) and the content of MDA was decreased significantly (P<0.05). Conclusion: Compound Astragalus water extraction has the best effect of hypoxia tolerance, compound Rhodiola Rosea can eliminate Rhodiola rosea and consists of Astragali Radix, Polygonati Rhizoma, Lycii Fructus and its extraction method is water extraction.
Animals
;
Astragalus Plant
;
Ethanol
;
Hypoxia
;
Male
;
Mice
;
Plant Extracts/pharmacology*
;
Rhodiola
;
Sodium Nitrite
;
Superoxide Dismutase/metabolism*
;
Water

Result Analysis
Print
Save
E-mail