1.Isolation and nitrogen transformation characterization of a moderately halophilic nitrification-aerobic denitrification strain Halomonas sp. 5505.
Zhuobin XIE ; Yun WANG ; Gangqiang JIANG ; Yuwei LI ; Wenchang LI ; Yifan LIU ; Zhangxiu WU ; Yuanyuan HUANG ; Shukun TANG
Chinese Journal of Biotechnology 2025;41(6):2467-2482
The biological nitrogen removal technology utilizing heterotrophic nitrification-aerobic denitrification (HN-AD) bacteria has shown effectiveness in wastewater treatment. However, the nitrogen removal efficiency of HN-AD bacteria significantly decreases as the salinity increases. To tackle the challenge of treating high-salt and high-nitrogen wastewater, we isolated a moderately halophilic HN-AD strain 5505 from a salt lake in Xinjiang. The strain was identified based on morphological, physiological, and biochemical characteristics and the 16S rRNA gene sequence. Single-factor experiments were carried out with NH4+-N, NO3--N, and NO2--N as sole or mixed nitrogen sources to study the nitrifying effect, denitrifying effect, and nitrogen metabolism pathway of the strain. The strain was identified as Halomonas sp.. It can grow in the presence of 1%-25% (W/V) NaCl and exhibited efficient nitrogen removal ability in the presence of 3%-8% NaCl. At the optimal NaCl concentration (8%), the strain showed the NH4+-N, NO3--N and NO2--N removal rates of 100.0%, 94.11% and 74.43%, respectively. Strain 5505 removed inorganic nitrogen mainly by assimilation, which accounted for over 62.68% of total nitrogen removal. In the presence of mixed nitrogen sources, strain 5505 showed a preference for utilizing ammonia, with a potential HN-AD pathway of NH4+→NH2OH→NO2-→NO3-→NO2-→NO/N2O/N2. The findings provide efficient salt-tolerant bacterial resources, enhance our understanding of biological nitrogen removal, and contribute to the nitrogen removal efficiency improvement in the treatment of high-salt and high-nitrogen wastewater.
Halomonas/classification*
;
Nitrogen/isolation & purification*
;
Denitrification
;
Nitrification
;
Wastewater/microbiology*
;
Aerobiosis
;
Biodegradation, Environmental
;
Salinity
2.Denitrifying phosphate accumulating organisms and its mechanism of nitrogen and phosphorus removal.
Chunxia ZHENG ; Cerong WANG ; Manman ZHANG ; Qifeng WU ; Mengping CHEN ; Chenyu DING ; Tengxia HE
Chinese Journal of Biotechnology 2023;39(3):1009-1025
Water eutrophication poses great threats to protection of water environment. Microbial remediation of water eutrophication has shown high efficiency, low consumption and no secondary pollution, thus becoming an important approach for ecological remediation. In recent years, researches on denitrifying phosphate accumulating organisms and their application in wastewater treatment processes have received increasing attention. Different from the traditional nitrogen and phosphorus removal process conducted by denitrifying bacteria and phosphate accumulating organisms, the denitrifying phosphate accumulating organisms can simultaneously remove nitrogen and phosphorus under alternated anaerobic and anoxic/aerobic conditions. It is worth noting that microorganisms capable of simultaneously removing nitrogen and phosphorus absolutely under aerobic conditions have been reported in recent years, but the mechanisms remain unclear. This review summarizes the species and characteristics of denitrifying phosphate accumulating organisms and the microorganisms capable of performing simultaneous nitrification-denitrification and phosphorous removal. Moreover, this review analyzes the relationship between nitrogen removal and phosphorus removal and the underlying mechanisms, discusses the challenges of denitrifying phosphorus removal, and prospects future research directions, with the aim to facilitate process improvement of denitrifying phosphate accumulating organisms.
Phosphorus
;
Phosphates
;
Wastewater
;
Denitrification
;
Waste Disposal, Fluid
;
Nitrogen
;
Bioreactors/microbiology*
;
Nitrification
;
Sewage
3.Enhanced nitrogen removal by bioelectrochemical coupling anammox and characteristics of microbial communities.
Lai XIE ; Min YANG ; Enzhe YANG ; Zhihua LIU ; Xin GENG ; Hong CHEN
Chinese Journal of Biotechnology 2023;39(7):2719-2729
To investigate the bioelectrochemical enhanced anaerobic ammonia oxidation (anammox) nitrogen removal process, a bioelectrochemical system with coupled anammox cathode was constructed using a dual-chamber microbial electrolysis cell (MEC). Specifically, a dark incubation batch experiment was conducted at 30 ℃ with different influent total nitrogen concentrations under an applied voltage of 0.2 V, and the enhanced denitrification mechanism was investigated by combining various characterization methods such as cyclic voltammetry, electrochemical impedance spectroscopy and high-throughput sequencing methods. The results showed that the total nitrogen removal rates of 96.9%±0.3%, 97.3%±0.4% and 99.0%±0.3% were obtained when the initial total nitrogen concentration was 200, 300 and 400 mg/L, respectively. In addition, the cathode electrode biofilm showed good electrochemical activity. High-throughput sequencing results showed that the applied voltage enriched other denitrifying functional groups, including Denitratisoma, Limnobacter, and ammonia oxidizing bacteria SM1A02 and Anaerolineaceae, Nitrosomonas europaea and Nitrospira, besides the anammox bacteria. These electrochemically active microorganisms comprised of ammonium oxidizing exoelectrogens (AOE) and denitrifying electrotrophs (DNE). Together with anammox bacteria Candidatus Brocadia, they constituted the microbial community structure of denitrification system. Enhanced direct interspecies electron transfer between AOE and DNE was the fundamental reason for the further improvement of the total nitrogen removal rate of the system.
Denitrification
;
Wastewater
;
Anaerobic Ammonia Oxidation
;
Nitrogen
;
Oxidation-Reduction
;
Bioreactors/microbiology*
;
Ammonium Compounds
;
Bacteria/genetics*
;
Microbiota
;
Sewage

Result Analysis
Print
Save
E-mail