1.Shewanella biofilm formation regulated by acyl-homoserine lactones and its application in UO22+ electrosorption.
Tingting LIU ; Hong SHU ; Qian LI ; Zhao CUI ; Guangyue LI ; Ting LI ; Yongdong WANG ; Jing SUN
Chinese Journal of Biotechnology 2025;41(8):3081-3097
Shewanella oneidensis MR-1, a Gram-negative bacterium with a significant role in the adsorption and reduction of uranium in wastewater and a quorum-sensing effect, can be used to remove uranium from wastewater. Exogenous signaling molecules (acyl-homoserine lactones, AHLs) can be added to induce the quorum sensing behavior for rapid biofilm formation, thereby improving the removal efficiency of this bacterium for uranium. Extracellular polymeric substances (EPS), as the significant components of biofilm, play a key role in biofilm formation. To investigate the quorum sensing behavior induced by AHLs, we systematically investigated the effects of AHLs on the EPS secretion and biofilm properties of S. oneidensis MR-1 by regulating parameters such as AHL species, concentration, addition time point, and contact time. The results showed that the addition of 10 μmol/L N-butyryl-l-homoserine lactone (C4-HSL) after 6 h of culture and continued incubation to reach the time point of 72 h significantly promoted the secretion of EPSs, in which the content of extracellular proteins and extracellular polysaccharides was increased by 15.2% and 28.2%, respectively, compared with that of the control group. The biofilm electrodes induced by signaling molecules showed superior properties, which were evidenced by an increase of exceeding 20 μm in biofilm thickness, an increase of 33.9% in the proportion of living cells, enhanced electroactivity, and an increase of 10.7% in the uranium removal rate. The biofilm electrode was confirmed to immobilize uranium in wastewater mainly by electrosorption, physicochemical adsorption, and electro-reduction through characterization means such as X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR). This study provides a new technical idea for the efficient recovery of uranium in wastewater and enriches the theoretical system of quorum sensing regulation of electroactive biofilms.
Biofilms/drug effects*
;
Acyl-Butyrolactones/pharmacology*
;
Quorum Sensing/drug effects*
;
Uranium/metabolism*
;
Shewanella/metabolism*
;
Adsorption
;
Uranium Compounds/metabolism*
;
Wastewater/chemistry*
;
Biodegradation, Environmental
;
Extracellular Polymeric Substance Matrix/metabolism*
2.Research progress in the adsorption of heavy metal ions from wastewater by modified biochar.
Jing HONG ; Yongyong DAI ; Qijun NIE ; Zhiqiang LIAO ; Liangcai PENG ; Dan SUN
Chinese Journal of Biotechnology 2024;40(12):4467-4479
The rapid development of modern industries is accompanied with the aggravating water heavy metal pollution, which poses a potential threat to the aquatic environment and the health of local populations. As an efficient and economical adsorbent, biochar demonstrates the adsorption capacity for heavy metal ions and its adsorption capacity is significantly enhanced after modification. Therefore, biochar can effectively mitigate environmental pollution. By reviewing the existing studies, we summarize the modification methods of biochar, compare the advantages and disadvantages of physical, biological, and chemical modification methods, analyze the effects of modification on the adsorption capacity of biochar for heavy metal ions, and expound the modification mechanism of biochar. On this basis, this article puts forward the future research directions of the application of biochar in treating coexisting pollutants, aiming to provide a reference for the application of biochar in the purification of heavy metal-containing wastewater.
Charcoal/chemistry*
;
Metals, Heavy
;
Adsorption
;
Wastewater/chemistry*
;
Water Pollutants, Chemical/chemistry*
;
Water Purification/methods*
;
Heavy Ions
;
Waste Disposal, Fluid/methods*
3.The toxicity of ZnO and CuO nanoparticles on biological wastewater treatment and its detoxification: a review.
Yuran YANG ; Can ZHANG ; Zhenlun LI
Chinese Journal of Biotechnology 2023;39(3):1026-1039
The wide use of ZnO and CuO nanoparticles in research, medicine, industry, and other fields has raised concerns about their biosafety. It is therefore unavoidable to be discharged into the sewage treatment system. Due to the unique physical and chemical properties of ZnO NPs and CuO NPs, it may be toxic to the members of the microbial community and their growth and metabolism, which in turn affects the stable operation of sewage nitrogen removal. This study summarizes the toxicity mechanism of two typical metal oxide nanoparticles (ZnO NPs and CuO NPs) to nitrogen removal microorganisms in sewage treatment systems. Furthermore, the factors affecting the cytotoxicity of metal oxide nanoparticles (MONPs) are summarized. This review aims to provide a theoretical basis and support for the future mitigating and emergent treatment of the adverse effects of nanoparticles on sewage treatment systems.
Wastewater/toxicity*
;
Sewage/chemistry*
;
Zinc Oxide/chemistry*
;
Waste Disposal, Fluid
;
Nanoparticles/chemistry*
;
Metal Nanoparticles/chemistry*
;
Nitrogen/metabolism*
;
Water Purification
4.Effects of different external carbon sources and electron acceptors on interactions between denitrification and phosphorus removal in biological nutrient removal processes.
Xiang HU ; Dominika SOBOTKA ; Krzysztof CZERWIONKA ; Qi ZHOU ; Li XIE ; Jacek MAKINIA
Journal of Zhejiang University. Science. B 2018;19(4):305-316
The effects of two different external carbon sources (acetate and ethanol) and electron acceptors (dissolved oxygen, nitrate, and nitrite) were investigated under aerobic and anoxic conditions with non-acclimated process biomass from a full-scale biological nutrient removal-activated sludge system. When acetate was added as an external carbon source, phosphate release was observed even in the presence of electron acceptors. The release rates were 1.7, 7.8, and 3.5 mg P/(g MLVSS·h) (MLVSS: mixed liquor volatile suspended solids), respectively, for dissolved oxygen, nitrate, and nitrite. In the case of ethanol, no phosphate release was observed in the presence of electron acceptors. Results of the experiments with nitrite showed that approximately 25 mg NO2-N/L of nitrite inhibited anoxic phosphorus uptake regardless of the concentration of the tested external carbon sources. Furthermore, higher denitrification rates were obtained with acetate (1.4 and 0.8 mg N/(g MLVSS·h)) compared to ethanol (1.1 and 0.7 mg N/ (g MLVSS·h)) for both anoxic electron acceptors (nitrate and nitrite).
Biomass
;
Bioreactors
;
Carbon/chemistry*
;
Denitrification
;
Electrons
;
Nitrates
;
Nitrites
;
Oxygen
;
Phosphates
;
Phosphorus/chemistry*
;
Sewage
;
Waste Disposal, Fluid/methods*
;
Wastewater
;
Water Pollutants, Chemical
;
Water Purification/methods*

Result Analysis
Print
Save
E-mail