1.Exploration and application of pyrolysis in production of fuel gas from traditional Chinese medicine solid waste under "dual carbon" goals.
Ying-Lei LU ; Xu LONG ; Ke-Ying WANG ; Jing-Li LIU ; Yan-Lei ZHANG ; Yu-Ping TANG
China Journal of Chinese Materia Medica 2025;50(6):1437-1448
Traditional Chinese medicine(TCM) solid waste is characterized by widespread availability, renewability, and substantial production volume. In the context of the "dual carbon" goals, the pyrolysis of TCM solid waste for producing fuel gas for recycling in pharmaceutical production has emerged as a crucial strategy for optimizing the energy structure in the TCM industry and developing renewable energy. This paper comprehensively reviews both internal and external factors that influence the pyrolysis of TCM solid waste. Internal factors encompass moisture content, particle size, ash content, and the morphology of the raw materials, while external factors include pyrolysis conditions, equivalence ratios, types of gasifiers, and gasifying agents. Furthermore, this paper details the challenges associated with the pyrolysis of TCM solid waste, such as the dispersion of feedstocks, the diversity of resources, the complexity of the pyrolysis process, and the variations in gasifier performance. Finally, this paper proposes measures to address these challenges. This paper aims to provide insights into the development of a circular economy for TCM resources and the advancement of low-carbon energy utilization in the TCM industry.
Pyrolysis
;
Carbon/chemistry*
;
Medicine, Chinese Traditional
;
Solid Waste/analysis*
;
Drugs, Chinese Herbal/chemistry*
;
Gases/chemistry*
2.Serratia marcescens TF-1 for biodegradation of chlorobenzene contaminants in soil and its application in in-situ remediation of chemical industrial sites.
Fang GOU ; Yunchun SHI ; Hao CHEN ; Wenting FU ; Liangjie LI ; Zhilin XING ; Jiangfeng GUO
Chinese Journal of Biotechnology 2025;41(6):2483-2497
Chlorobenzene contaminants (CBs) pose a threat to the eco-environment, and functional strains hold considerable potential for the remediation of CB-contaminated sites. To deeply explore the application potential of functional bacteria in the in-situ bioremediation of CBs, this study focused on the biodegradation characteristics and degradation kinetics of CB and 1, 2-dichlorobenzene (1, 2-DCB) in soil by the isolated strain Serratia marcescens TF-1. Additionally, an in-situ remediation trial was conducted with this strain at a chemical industrial site. Batch serum bottle experiments showed that the degradation rate of CB at the concentrations ranging from 20 to 200 mg/L by TF-1 was 0.22-0.66 mol/(gcell·h), following the Haldane model, with the optimal concentration at 23.12 mg/L. The results from simulated soil degradation experiments indicated that the combined use of TF-1 and sodium succinate (SS) significantly enhanced the degradation of CBs, with the maximum degradation rate of CB reaching 0.104 d-1 and a half-life of 6.66 d. For 1, 2-DCB, the maximum degradation rate constant was 0.068 7 d-1, with a half-life of 10.087 d. The in-situ remediation results at the chemically contaminated site demonstrated that the introduction of bacterial inoculant and SS significantly improved the removal of CBs, achieving the removal rates of 84.2%-100% after 10 d. CB, 1, 4-dichlorobenzene (1, 4-DCB), and benzo[a]pyrene were completely removed. Microbial diversity analysis revealed that the in-situ remediation facilitated the colonization of TF-1 and the enrichment of indigenous nitrogen-fixing Azoarcus, which may have played a key role in the degradation process. This study provides a theoretical basis and practical experience for the in situ bioremediation of CBs-contaminated sites.
Chlorobenzenes/isolation & purification*
;
Biodegradation, Environmental
;
Soil Pollutants/isolation & purification*
;
Serratia marcescens/metabolism*
;
Industrial Waste
;
Soil Microbiology
3.Research progress in the adsorption of heavy metal ions from wastewater by modified biochar.
Jing HONG ; Yongyong DAI ; Qijun NIE ; Zhiqiang LIAO ; Liangcai PENG ; Dan SUN
Chinese Journal of Biotechnology 2024;40(12):4467-4479
The rapid development of modern industries is accompanied with the aggravating water heavy metal pollution, which poses a potential threat to the aquatic environment and the health of local populations. As an efficient and economical adsorbent, biochar demonstrates the adsorption capacity for heavy metal ions and its adsorption capacity is significantly enhanced after modification. Therefore, biochar can effectively mitigate environmental pollution. By reviewing the existing studies, we summarize the modification methods of biochar, compare the advantages and disadvantages of physical, biological, and chemical modification methods, analyze the effects of modification on the adsorption capacity of biochar for heavy metal ions, and expound the modification mechanism of biochar. On this basis, this article puts forward the future research directions of the application of biochar in treating coexisting pollutants, aiming to provide a reference for the application of biochar in the purification of heavy metal-containing wastewater.
Charcoal/chemistry*
;
Metals, Heavy
;
Adsorption
;
Wastewater/chemistry*
;
Water Pollutants, Chemical/chemistry*
;
Water Purification/methods*
;
Heavy Ions
;
Waste Disposal, Fluid/methods*
4.Estimation of the consumption level of four drugs in Beijing using wastewater-based epidemiology.
Jiawulan ZUNONG ; Mu Shui SHU ; Meng Long LI ; Yeerlin ASIHAER ; Meng Ying GUAN ; Yi Fei HU
Chinese Journal of Preventive Medicine 2023;57(5):674-678
Objective: To estimate the consumption level of four drugs in Beijing using wastewater-based epidemiology (WBE). Methods: The primary sludge from one large wastewater treatment plants (WWTPs) was collected in Beijing from July 2020 to February 2021. The concentrations of codeine, methadone, ketamine and morphine in the sludge were detected through solid-phase extraction-liquid chromatography-tandem mass spectrometry. The consumption, prevalence and number of users of four drugs were estimated by using the WBE approach. Results: Among 416 sludge samples, codeine had the highest detection rate (82.93%, n=345) with a concentration [M (Q1, Q3)] of 0.40 (0.22-0.8) ng·g-1, and morphine had the lowest detection rate (28.37%,n=118) with a concentration [M (Q1, Q3)] of 0.13 (0.09, 0.17) ng·g-1. There was no significant difference in the consumption of the four drugs on working days and weekends (all P values>0.05). Drug consumption was significantly higher in winter than that in summer and autumn (all P values <0.05). The consumption [M (Q1, Q3)] of codeine, methadone, ketamine and morphine in winter was 24.9 (15.58, 38.6), 9.39 (4.57, 26.72), 9.84 (5.18, 19.45) and 5.67 (3.57, 13.77) μg·inhabitant-1·day-1, respectively. For these drugs, there was an upward trend in the average drug consumption during summer, autumn and winter (the Z values of the trend test were 3.23, 3.16, 2.19, and 3.32, respectively and all P values<0.05). The prevalence [M (Q1, Q3)] of codeine, methadone, ketamine and morphine were 0.0056% (0.003 4%, 0.009 2%), 0.0148% (0.009 6%, 0.026 7%),0.0333% (0.0210%, 0.0710%) and 0.0072% (0.003 8%, 0.011 7%), respectively. The estimated number of drug users [M (Q1, Q3)] was 918 (549, 1 511), 2 429 (1 578, 4 383), 5 451 (3 444, 11 642) and 1 173 (626, 1 925),respectively. Conclusion: Codeine, methadone, ketamine and morphine have been detected in the sludge of WWTPs in Beijing, and the consumption level of these drugs varies in different seasons.
Humans
;
Beijing
;
Wastewater-Based Epidemiological Monitoring
;
Sewage/analysis*
;
Wastewater
;
Ketamine/analysis*
;
Codeine/analysis*
;
Methadone/analysis*
;
Water Pollutants, Chemical/analysis*
5.Recent advances in the structure and function of microbial community in anaerobic granular sludge.
Changjie GUO ; Weigang WANG ; Yayi WANG
Chinese Journal of Biotechnology 2023;39(11):4517-4533
Anaerobic granular sludge (AnGS), a self-immobilized aggregate containing various functional microorganisms, is considered as a promising green process for wastewater treatment. AnGS has the advantages of high volume loading rate, simple process and low excess sludge generation, thus shows great technological and economical potentials. This review systematically summarizes the recent advances of the microbial community structure and function of anaerobic granular sludge, and discusses the factors affecting the formation and stability of anaerobic granular sludge from the perspective of microbiology. Moreover, future research directions of AnGS are prospected. This review is expected to facilitate the research and engineering application of AnGS.
Sewage/chemistry*
;
Waste Disposal, Fluid
;
Anaerobiosis
;
Microbiota
;
Water Purification
;
Bioreactors/microbiology*
6.Denitrifying phosphate accumulating organisms and its mechanism of nitrogen and phosphorus removal.
Chunxia ZHENG ; Cerong WANG ; Manman ZHANG ; Qifeng WU ; Mengping CHEN ; Chenyu DING ; Tengxia HE
Chinese Journal of Biotechnology 2023;39(3):1009-1025
Water eutrophication poses great threats to protection of water environment. Microbial remediation of water eutrophication has shown high efficiency, low consumption and no secondary pollution, thus becoming an important approach for ecological remediation. In recent years, researches on denitrifying phosphate accumulating organisms and their application in wastewater treatment processes have received increasing attention. Different from the traditional nitrogen and phosphorus removal process conducted by denitrifying bacteria and phosphate accumulating organisms, the denitrifying phosphate accumulating organisms can simultaneously remove nitrogen and phosphorus under alternated anaerobic and anoxic/aerobic conditions. It is worth noting that microorganisms capable of simultaneously removing nitrogen and phosphorus absolutely under aerobic conditions have been reported in recent years, but the mechanisms remain unclear. This review summarizes the species and characteristics of denitrifying phosphate accumulating organisms and the microorganisms capable of performing simultaneous nitrification-denitrification and phosphorous removal. Moreover, this review analyzes the relationship between nitrogen removal and phosphorus removal and the underlying mechanisms, discusses the challenges of denitrifying phosphorus removal, and prospects future research directions, with the aim to facilitate process improvement of denitrifying phosphate accumulating organisms.
Phosphorus
;
Phosphates
;
Wastewater
;
Denitrification
;
Waste Disposal, Fluid
;
Nitrogen
;
Bioreactors/microbiology*
;
Nitrification
;
Sewage
7.The toxicity of ZnO and CuO nanoparticles on biological wastewater treatment and its detoxification: a review.
Yuran YANG ; Can ZHANG ; Zhenlun LI
Chinese Journal of Biotechnology 2023;39(3):1026-1039
The wide use of ZnO and CuO nanoparticles in research, medicine, industry, and other fields has raised concerns about their biosafety. It is therefore unavoidable to be discharged into the sewage treatment system. Due to the unique physical and chemical properties of ZnO NPs and CuO NPs, it may be toxic to the members of the microbial community and their growth and metabolism, which in turn affects the stable operation of sewage nitrogen removal. This study summarizes the toxicity mechanism of two typical metal oxide nanoparticles (ZnO NPs and CuO NPs) to nitrogen removal microorganisms in sewage treatment systems. Furthermore, the factors affecting the cytotoxicity of metal oxide nanoparticles (MONPs) are summarized. This review aims to provide a theoretical basis and support for the future mitigating and emergent treatment of the adverse effects of nanoparticles on sewage treatment systems.
Wastewater/toxicity*
;
Sewage/chemistry*
;
Zinc Oxide/chemistry*
;
Waste Disposal, Fluid
;
Nanoparticles/chemistry*
;
Metal Nanoparticles/chemistry*
;
Nitrogen/metabolism*
;
Water Purification
8.Microorganisms used for bioleaching of metals from typical solid wastes and their leaching mechanism: a review.
Ruixue JIA ; Weihua GU ; Jing ZHAO ; Jianfeng BAL
Chinese Journal of Biotechnology 2023;39(3):1040-1055
Typical solid wastes contain many metal resources, which are worthy of recycling. The bioleaching of typical solid waste is affected by multiple factors. Green and efficient recovery of metals based on the characterization of leaching microorganisms and the elucidation of leaching mechanisms may contribute to the implementation of China's "dual carbon" strategic goals. This paper reviews various types of microorganisms used for leaching metals from typical solid wastes, analyzes the action mechanism of metallurgical microorganisms, and prospects the application of metallurgical microorganisms to facilitate the application of metallurgical microorganisms in typical solid wastes.
Solid Waste
;
Metals
;
Metallurgy
;
Carbon
9.Pyridine degradation characteristics of Rhodococcus sp. LV4 under high salinity conditions.
Ying WANG ; Hu CHEN ; Mengdi XU ; Yongkang LÜ
Chinese Journal of Biotechnology 2023;39(3):1202-1216
Biodegradation of pyridine pollutant by microorganisms is one of the economical and effective methods to solve the environmental pollution of pyridine under high salinity conditions. To this end, screening of microorganisms with pyridine degradation capability and high salinity tolerance is an important prerequisite. In this paper, a salt-resistant pyridine degradation bacterium was isolated from the activated sludge of Shanxi coking wastewater treatment plant, and identified as a bacterium belonging to Rhodococcus on the basis of colony morphology and 16S rDNA gene phylogenetic analysis. Salt tolerance experiment showed that strain LV4 could grow and degrade pyridine with the initial concentration of 500 mg/L completely in 0%-6% saline environment. However, when the salinity was higher than 4%, strain LV4 grew slowly and the degradation time of pyridine by strain LV4 was significantly prolonged. Scanning electron microscopy showed that the cell division of strain LV4 became slower, and more granular extracellular polymeric substance (EPS) was induced to secrete in high salinity environment. When the salinity was not higher than 4%, strain LV4 responded to the high salinity environment mainly through increasing the protein content in EPS. The optimum conditions for pyridine degradation by strain LV4 at 4% salinity were 30 ℃, pH 7.0 and 120 r/min (DO 10.30 mg/L). Under these optimal conditions, strain LV4 could completely degrade pyridine with an initial concentration of 500 mg/L at a maximum rate of (29.10±0.18) mg/(L·h) after 12 h adaptation period, and the total organic carbon (TOC) removal efficiency reached 88.36%, indicating that stain LV4 has a good mineralization effect on pyridine. By analyzing the intermediate products in pyridine degradation process, it was speculated that strain LV4 achieved pyridine ring opening and degradation mainly through two metabolic pathways: pyridine-ring hydroxylation and pyridine-ring hydrogenation. The rapid degradation of pyridine by strain LV4 in high salinity environment indicates its application potential in the pollution control of high salinity pyridine environment.
Rhodococcus/genetics*
;
Phylogeny
;
Extracellular Polymeric Substance Matrix/metabolism*
;
Sewage
;
Biodegradation, Environmental
;
Pyridines/metabolism*
10.Enhanced nitrogen removal by bioelectrochemical coupling anammox and characteristics of microbial communities.
Lai XIE ; Min YANG ; Enzhe YANG ; Zhihua LIU ; Xin GENG ; Hong CHEN
Chinese Journal of Biotechnology 2023;39(7):2719-2729
To investigate the bioelectrochemical enhanced anaerobic ammonia oxidation (anammox) nitrogen removal process, a bioelectrochemical system with coupled anammox cathode was constructed using a dual-chamber microbial electrolysis cell (MEC). Specifically, a dark incubation batch experiment was conducted at 30 ℃ with different influent total nitrogen concentrations under an applied voltage of 0.2 V, and the enhanced denitrification mechanism was investigated by combining various characterization methods such as cyclic voltammetry, electrochemical impedance spectroscopy and high-throughput sequencing methods. The results showed that the total nitrogen removal rates of 96.9%±0.3%, 97.3%±0.4% and 99.0%±0.3% were obtained when the initial total nitrogen concentration was 200, 300 and 400 mg/L, respectively. In addition, the cathode electrode biofilm showed good electrochemical activity. High-throughput sequencing results showed that the applied voltage enriched other denitrifying functional groups, including Denitratisoma, Limnobacter, and ammonia oxidizing bacteria SM1A02 and Anaerolineaceae, Nitrosomonas europaea and Nitrospira, besides the anammox bacteria. These electrochemically active microorganisms comprised of ammonium oxidizing exoelectrogens (AOE) and denitrifying electrotrophs (DNE). Together with anammox bacteria Candidatus Brocadia, they constituted the microbial community structure of denitrification system. Enhanced direct interspecies electron transfer between AOE and DNE was the fundamental reason for the further improvement of the total nitrogen removal rate of the system.
Denitrification
;
Wastewater
;
Anaerobic Ammonia Oxidation
;
Nitrogen
;
Oxidation-Reduction
;
Bioreactors/microbiology*
;
Ammonium Compounds
;
Bacteria/genetics*
;
Microbiota
;
Sewage

Result Analysis
Print
Save
E-mail