1.Application of Gas Chromatography Ion Mobility Spectrometry Technology Combined with Chemometric Methods in Identification of Foeniculi Fructus from Haiyuan Region
Xiurong TIAN ; Hao WANG ; Kejing PANG ; Penglong YU ; Xia LIU ; Mengyue SHEN ; Xianglin JIANG ; Yonghua LI ; Zhihong LI ; Hongqiong DING ; Qin YANG ; Xingying LI ; Qian XIONG ; Guochao WAN ; Yuexiang MA ; Zhenping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):184-192
ObjectiveTo establish a geographical origin identification model for Foeniculi Fructus from Haiyuan, providing a new technical reference for the protection of Haiyuan's geo-authentic medicinal materials and its designation as a national geographical indication agricultural product. MethodsSamples of Foeniculi Fructus were collected from eight producing areas, including Minqin (Gansu), Bozhou (Anhui), Qingdao (Shandong), Dezhou (Shandong), Urumqi (Xinjiang), Nujiang (Yunnan), Gutuo (Inner Mongolia), and Haiyuan (Ningxia). Gas chromatography-ion mobility spectrometry (GC-IMS) was used to detect the volatile organic compounds (VOCs) in samples from these geographic origins. VOCs were qualitatively analyzed through dual matching with the National Institute of Standards and Technology (NIST) mass spectral database and the IMS drift time database. Using the Reporter module and Gallery Plot visualization tools within the LAV analytical platform, VOC fingerprint profiles characterizing geographic origins were constructed. A non-targeted analytical strategy was adopted, and 97 VOCs detected via GC-IMS were subjected to principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) based on their differential distribution patterns to construct an origin identification model for Foeniculi Fructus from Haiyuan region. Key discriminative markers were screened using variable importance in projection (VIP) values greater than 1. ResultsA total of 97 VOCs were identified, including alcohols, aldehydes, ketones, esters, organic acids, terpenoids, ethers, alkenes, and benzenes. The PLS-DA model, based on VOCs data obtained by GC-IMS, effectively distinguished Foeniculi Fructus in Haiyuan region from those of other origins. During cross-validation, the model achieved a prediction parameter (Q2) of 0.976 and a goodness-of-fit parameter (R2) of 0.936, with no overfitting observed in permutation testing. Twelve key flavor markers with VIP > 1 were identified as characteristic indicators of Haiyuan origin. ConclusionA stable and highly predictive origin identification model for Foeniculi Fructus from Haiyuan was successfully established using GC-IMS technology, PLS-DA, and VIP-based marker screening. This model provides a novel technical strategy for accurately distinguishing Foeniculi Fructus in Haiyuan region from other regional varieties and offers new technical support for its protection as a geo-authentic medicinal material and a nationally designated geographical indication agricultural product in China.
2.Application of Gas Chromatography Ion Mobility Spectrometry Technology Combined with Chemometric Methods in Identification of Foeniculi Fructus from Haiyuan Region
Xiurong TIAN ; Hao WANG ; Kejing PANG ; Penglong YU ; Xia LIU ; Mengyue SHEN ; Xianglin JIANG ; Yonghua LI ; Zhihong LI ; Hongqiong DING ; Qin YANG ; Xingying LI ; Qian XIONG ; Guochao WAN ; Yuexiang MA ; Zhenping LIU
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(17):184-192
ObjectiveTo establish a geographical origin identification model for Foeniculi Fructus from Haiyuan, providing a new technical reference for the protection of Haiyuan's geo-authentic medicinal materials and its designation as a national geographical indication agricultural product. MethodsSamples of Foeniculi Fructus were collected from eight producing areas, including Minqin (Gansu), Bozhou (Anhui), Qingdao (Shandong), Dezhou (Shandong), Urumqi (Xinjiang), Nujiang (Yunnan), Gutuo (Inner Mongolia), and Haiyuan (Ningxia). Gas chromatography-ion mobility spectrometry (GC-IMS) was used to detect the volatile organic compounds (VOCs) in samples from these geographic origins. VOCs were qualitatively analyzed through dual matching with the National Institute of Standards and Technology (NIST) mass spectral database and the IMS drift time database. Using the Reporter module and Gallery Plot visualization tools within the LAV analytical platform, VOC fingerprint profiles characterizing geographic origins were constructed. A non-targeted analytical strategy was adopted, and 97 VOCs detected via GC-IMS were subjected to principal component analysis (PCA) and partial least squares discriminant analysis (PLS-DA) based on their differential distribution patterns to construct an origin identification model for Foeniculi Fructus from Haiyuan region. Key discriminative markers were screened using variable importance in projection (VIP) values greater than 1. ResultsA total of 97 VOCs were identified, including alcohols, aldehydes, ketones, esters, organic acids, terpenoids, ethers, alkenes, and benzenes. The PLS-DA model, based on VOCs data obtained by GC-IMS, effectively distinguished Foeniculi Fructus in Haiyuan region from those of other origins. During cross-validation, the model achieved a prediction parameter (Q2) of 0.976 and a goodness-of-fit parameter (R2) of 0.936, with no overfitting observed in permutation testing. Twelve key flavor markers with VIP > 1 were identified as characteristic indicators of Haiyuan origin. ConclusionA stable and highly predictive origin identification model for Foeniculi Fructus from Haiyuan was successfully established using GC-IMS technology, PLS-DA, and VIP-based marker screening. This model provides a novel technical strategy for accurately distinguishing Foeniculi Fructus in Haiyuan region from other regional varieties and offers new technical support for its protection as a geo-authentic medicinal material and a nationally designated geographical indication agricultural product in China.
3.Analysis of red blood cell blood group gene polymorphism and applicability evaluation of PCR-TaqMan technology in the Hui ethnic blood donor population in Suzhou
Jia JIANG ; Zhihong FANG ; Zihao XU ; Kai WANG ; Nina JIANG
Chinese Journal of Blood Transfusion 2025;38(9):1218-1224
Objective: To investigate the characteristics of allele frequencies for 9 red blood cell (RBC) blood group systems in the Hui ethnic voluntary blood donor population of Suzhou using real-time fluorescence PCR technology, so as to provide technical support for establishing a RBC blood group genetic database. Methods: PCR-TaqMan technology was employed to perform genotyping detection for 9 RBC blood group systems using 144 samples from Hui voluntary blood donors in Suzhou, collected between October 2023 and August 2024. Results: Blood group allele frequencies among Suzhou Hui voluntary blood donors were distributed as follows: MNS system (M=0.566 0, N=0.434 0; S=0.079 9, s=0.920 1); Lutheran system (Lu
=0.003 5, Lu
=0.996 5; Au
=0.895 8, Au
=0.104 2); Kell system (K=0.000 0, k=1.000 0; Kp
=0.003 5, Kp
=0.996 5; JS
=0.000 0, JS
=1.000 0); Duffy system (Fy
=0.899 3, Fy
=0.100 7); Kidd system (JK
=0.451 4, JK
=0.548 6); Diego system (Di
=0.041 7, Di
=0.958 3); Yt system (Yt
=0.996 5, Yt
=0.003 5); Dombrock system (Do
=0.128 5, Do
=0.871 5); Colton system (Co
=1.000 0, Co
=0.000 0). The PCR-TaqMan-based RBC blood group genotyping technology successfully completed testing for all samples. Conclusion: The MNS, Lutheran, Duffy, Kidd, Diego, and Dombrock blood group systems in the Suzhou Hui population exhibited polymorphic distribution patterns, whereas the Colton system was monomorphic. Standardized application of PCR-TaqMan technology facilitates the establishment of an RBC blood group genetic database.
4.Aromatic Substances and Their Clinical Application: A Review
Yundan GUO ; Lulu WANG ; Zhili ZHANG ; Chen GUO ; Zhihong PI ; Wei GONG ; Zongping WU ; Dayu WANG ; Tianle GAO ; Cai TIE ; Yuan LIN ; Jiandong JIANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(22):264-272
Aromatherapy refers to the method of using the aromatic components of plants in appropriate forms to act on the entire body or a specific area to prevent and treat diseases. Essential oils used in aromatherapy are hydrophobic liquids containing volatile aromatic molecules, such as limonene, linalool, linalool acetate, geraniol, and citronellol. These chemicals have been extensively studied and shown to have a variety of functions, including reducing anxiety, relieving depression, promoting sleep, and providing pain relief. Terpenoids are a class of organic molecules with relatively low lipid solubility. After being inhaled, they can pass through the nasal mucosa for transfer or penetrate the skin and enter the bloodstream upon local application. Some of these substances also have the ability to cross the blood-brain barrier, thereby exerting effects on the central nervous system. Currently, the academic community generally agrees that products such as essential oils and aromatherapy from aromatic plants have certain health benefits. However, the process of extracting a single component from it and successfully developing it into a drug still faces many challenges. Its safety and efficacy still need to be further verified through more rigorous and systematic experiments. This article systematically elaborated on the efficacy of aromatic substances, including plant extracts and natural small molecule compounds, in antibacterial and antiviral fields and the regulation of nervous system activity. As a result, a deeper understanding of aromatherapy was achieved. At the same time, the potential of these aromatic substances for drug development was thoroughly explored, providing important references and insights for possible future drug research and application.
5.Epidemiology and management patterns of chronic thromboembolic pulmonary hypertension in China.
Wanmu XIE ; Yongpei YU ; Qiang HUANG ; Xiaoyan YAN ; Yuanhua YANG ; Changming XIONG ; Zhihong LIU ; Jun WAN ; Sugang GONG ; Lan WANG ; Cheng HONG ; Chenghong LI ; Jean-François RICHARD ; Yanhua WU ; Jun ZOU ; Chen YAO ; Zhenguo ZHAI
Chinese Medical Journal 2025;138(8):1000-1002
6.Unveiling the metabolic fate of drugs through metabolic reaction-based molecular networking.
Haodong ZHU ; Xupeng TONG ; Qi WANG ; Aijing LI ; Zubao WU ; Qiqi WANG ; Pei LIN ; Xinsheng YAO ; Liufang HU ; Liangliang HE ; Zhihong YAO
Acta Pharmaceutica Sinica B 2025;15(6):3210-3225
Effective annotation of in vivo drug metabolites using liquid chromatography-mass spectrometry (LC-MS) remains a formidable challenge. Herein, a metabolic reaction-based molecular networking (MRMN) strategy is introduced, which enables the "one-pot" discovery of prototype drugs and their metabolites. MRMN constructs networks by matching metabolic reactions and evaluating MS2 spectral similarity, incorporating innovations and improvements in feature degradation of MS2 spectra, exclusion of endogenous interference, and recognition of redundant nodes. A minimum 75% correlation between structural similarity and MS2 similarity of neighboring metabolites was ensured, mitigating false negatives due to spectral feature degradation. At least 79% of nodes, 49% of edges, and 97% of subnetworks were reduced by an exclusion strategy of endogenous ions compared to the Global Natural Products Social Molecular Networking (GNPS) platform. Furthermore, an approach of redundant ions identification was refined, achieving a 10%-40% recognition rate across different samples. The effectiveness of MRMN was validated through a single compound, plant extract, and mixtures of multiple plant extracts. Notably, MRMN is freely accessible online at https://yaolab.network, broadening its applications.
7.Expert consensus on digital restoration of complete dentures.
Yue FENG ; Zhihong FENG ; Jing LI ; Jihua CHEN ; Haiyang YU ; Xinquan JIANG ; Yongsheng ZHOU ; Yumei ZHANG ; Cui HUANG ; Baiping FU ; Yan WANG ; Hui CHENG ; Jianfeng MA ; Qingsong JIANG ; Hongbing LIAO ; Chufan MA ; Weicai LIU ; Guofeng WU ; Sheng YANG ; Zhe WU ; Shizhu BAI ; Ming FANG ; Yan DONG ; Jiang WU ; Lin NIU ; Ling ZHANG ; Fu WANG ; Lina NIU
International Journal of Oral Science 2025;17(1):58-58
Digital technologies have become an integral part of complete denture restoration. With advancement in computer-aided design and computer-aided manufacturing (CAD/CAM), tools such as intraoral scanning, facial scanning, 3D printing, and numerical control machining are reshaping the workflow of complete denture restoration. Unlike conventional methods that rely heavily on clinical experience and manual techniques, digital technologies offer greater precision, predictability, and efficacy. They also streamline the process by reducing the number of patient visits and improving overall comfort. Despite these improvements, the clinical application of digital complete denture restoration still faces challenges that require further standardization. The major issues include appropriate case selection, establishing consistent digital workflows, and evaluating long-term outcomes. To address these challenges and provide clinical guidance for practitioners, this expert consensus outlines the principles, advantages, and limitations of digital complete denture technology. The aim of this review was to offer practical recommendations on indications, clinical procedures and precautions, evaluation metrics, and outcome assessment to support digital restoration of complete denture in clinical practice.
Humans
;
Denture, Complete
;
Computer-Aided Design
;
Denture Design/methods*
;
Consensus
;
Printing, Three-Dimensional
8.Structurally diverse sesquiterpenoids with anti-MDR cancer activity from Penicillium roqueforti.
Shuyuan MO ; Nanjin DING ; Zhihong HUANG ; Jun YAO ; Weiguang SUN ; Jianping WANG ; Yonghui ZHANG ; Zhengxi HU
Chinese Journal of Natural Medicines (English Ed.) 2025;23(4):504-512
Five novel nor-eremophilane-type sesquiterpenoids, peniroqueforins E-H and J (1-4 and 7), two new eremophilane-type sesquiterpenoids, peniroqueforins I and K (5 and 8), and a new eudesmane-type sesquiterpenoid, peniroqueforin L (9), along with four known compounds (6 and 10-12), were isolated and characterized from fungus Penicillium roqueforti (P. roqueforti). The structures and absolute configurations of these compounds were determined through comprehensive spectroscopic analyses, electronic circular dichroism (ECD) data analyses, and single-crystal X-ray diffraction methods. The anti-multi-drug resistance (MDR) cancer activity of these compounds was evaluated using SW620/Ad300 cells. Notably, the half maximal inhibitory concentration (IC50) value of paclitaxel (PTX) combined with 1 in SW620/Ad300 cells was 50.36 nmol·L-1, which was 65-fold more potent than PTX alone (IC50 3.26 μmol·L-1). Subsequent molecular docking studies revealed an affinity between compound 1 and P-glycoprotein (P-gp), suggesting that this nor-eremophilane-type sesquiterpenoid (1) could serve as a potential lead for MDR reversal in cancer cells through P-gp inhibition.
Penicillium/chemistry*
;
Humans
;
Sesquiterpenes/isolation & purification*
;
Cell Line, Tumor
;
Molecular Structure
;
Drug Resistance, Neoplasm/drug effects*
;
Antineoplastic Agents/pharmacology*
;
Drug Resistance, Multiple/drug effects*
;
Molecular Docking Simulation
9.Multi-omics analysis of hormesis effect of lanthanum chloride on carotenoid synthesis in Rhodotorula mucilaginosa.
Hong ZHANG ; Tong WEN ; Zhihong WANG ; Xin ZHAO ; Hao WU ; Pengcheng XIANG ; Yong MA
Chinese Journal of Biotechnology 2025;41(4):1631-1648
Hormesis effect has been observed in the secondary metabolite synthesis of microorganisms induced by rare earth elements. However, the underlying molecular mechanism remains unclear. To analyze the molecular mechanism of the regulatory effect of Rhodotorula mucilaginosa in the presence of lanthanum chloride, different concentrations of lanthanum chloride were added to the fermentation medium of Rhodotorula mucilaginosa, and the carotenoid content was subsequently measured. It was found that the concentrations of La3+ exerting the promotional and inhibitory effects were 0-100 mg/L and 100-400 mg/L, respectively. Furthermore, the expression of 33 genes and the synthesis of 55 metabolites were observed to be up-regulated, while the expression of 85 genes and the synthesis of 123 metabolites were found to be down-regulated at the concentration range of the promotional effect. Notably, the expression of carotenoid synthesis-related genes except AL1 was up-regulated. Additionally, the content of β-carotene, lycopene, and astaxanthin demonstrated increases of 10.74%, 5.02%, and 3.22%, respectively. The expression of 5 genes and the synthesis of 91 metabolites were up-regulated, while the expression of 35 genes and the synthesis of 138 metabolites were down-regulated at the concentration range of the inhibitory effect. Meanwhile, the content of β-carotene, lycopene, and astaxanthin decreased by 21.73%, 34.81%, and 35.51%, respectively. In summary, appropriate concentrations of rare earth ions can regulate the synthesis of secondary metabolites by modulating the activities of various enzymes involved in metabolic pathways, thereby exerting the hormesis effect. The findings of this study not only contribute to our comprehension for the mechanism of rare earth elements in organisms but also offer a promising avenue for the utilization of rare earth elements in diverse fields, including agriculture, pharmaceuticals, and healthcare.
Lanthanum/pharmacology*
;
Rhodotorula/genetics*
;
Carotenoids/metabolism*
;
Hormesis/drug effects*
;
Fermentation
;
Multiomics
10.Correlation Analysis between Traditional Chinese Medicine Service Efficiency and Comprehensive Medical Service Efficiency in County-Level Traditional Chinese Medicine Hospitals in Shandong Province
Xue SONG ; Jingjie SUN ; Zhihong LU ; Youwei LI ; Jiayu SUN ; Lijun WANG
Chinese Health Economics 2024;43(11):45-48
Objective:By analyzing the relationship between the efficiency of traditional Chinese medicine services and the efficiency of comprehensive medical services in county-level traditional Chinese medicine hospitals in Shandong,it explores the path of coordinated development between traditional Chinese medicine and western medicine in traditional Chinese medicine hospitals,providing references for the high-quality development of county-level traditional Chinese medicine hospitals.Methods:The efficiency of traditional Chinese medicine services and comprehensive medical services in county-level traditional Chinese medicine hospitals in Shandong Province from 2019 to 2022 was analyzed by Data Envelopment Analysis(DEA),and the correlation was analyzed by Spearman correlation coefficient.Results:The efficiency of traditional Chinese medicine services in county-level traditional Chinese medicine hospitals in Shandong Province is lower than that of comprehensive medical services,and the scale return coefficient of traditional Chinese medicine category indicators is better than that of comprehensive category indicators.There is a positive correlation between the efficiency of traditional Chinese medicine services and the efficiency of comprehensive medical services.Conclusion:Traditional Chinese medicine hospitals should appropriately expand their investment in traditional Chinese medicine resources.Adhere to the hospital management model of traditional Chinese medicine services as the main focus,and build a coordinated development path between traditional Chinese and western medicine from both the supply and demand sides.

Result Analysis
Print
Save
E-mail