1.Effect of Feiyanning Granules on Inducing Ferroptosis in Lung Cancer Cells and Its Regulatory Function onNrf2/SLC7A11/GPX4 Signaling Pathway
Xin LIU ; Wenjie WANG ; Zhenye XU ; Zhan ZHENG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(2):100-107
ObjectiveThis study aims to explore the effect of Feiyanning granules on ferroptosis in lung cancer cells and its regulatory function within the nuclear transcription factor E2-related factor 2 (Nrf2)/mouse solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway. MethodsThe cell counting kit-8 (CCK-8) method was used to detect the effect of Feiyanning granule on the proliferation of A549 lung cancer cells. A549 lung cancer cells were categorized into a blank group, a ferroptosis inhibitor-1 (Fer-1) group (10 μmol·L-1), a Feiyanning granules (600 mg·L-1) group, and a Feiyanning granules + Fer-1 group. After 48 hours of intervention, the activity and morphology of the cells were observed. The CCK-8 method was employed to measure cell viability. Biochemical assays were carried out to measure the levels of reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH), and ferrous ions (Fe²⁺) in A549 cells. Western blot was utilized to evaluate the expression levels of Kelch-like ECH-associated protein 1 (Keap1), Nrf2, SLC7A11, and GPX4 proteins. A549 lung cancer cells were categorized into a blank group and a Feiyanning Granule group (600 mg·L-1), and mitochondrial morphology was examined via transmission electron microscopy (TEM). ResultsAfter the intervention of Feiyaning granules, the proliferation of A549 cells was significantly inhibited in a concentration-dependent manner compared with that in the blank group (P<0.01). Compared with the blank group, the Feiyanning granules group exerted an significantly inhibitory effect on the viability of lung cancer cells (P<0.01). Compared with that in the Feiyanning granules group, the cell viability in the Feiyanning granules +Fer-1 group was obviously restored (P<0.05). Compared with the blank group, the Feiyanning Granule group showed a significant increase in the levels of ROS, MDA, and Fe²⁺ (P<0.01), a significant decrease in the GSH level (P<0.01), and facilitated ferroptosis. Compared with the blank group, the Feiyanning granules group showed significantly decreased expression of Nrf2, SLC7A11, and GPX4 proteins and enhanced expression of Keap1 (P<0.01). Compared with those in the Feiyanning Granule group, the protein levels of Nrf2, SLC7A11, and GPX4 increased significantly (P<0.01), and the expression of Keap1 decreased significantly in the Feiyanning granules + Fer-1 group (P<0.01). Compared with the blank group, the Feiyaning granules group exhibited reduced mitochondrial size and increased matrix electron density. ConclusionFeiyanning granules can induce ferroptosis in lung cancer cells, and its underlying mechanism might be associated with the inhibition of the Nrf2/SLC7A11/GPX4 signaling pathway.
2.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
3.Application Analysis of Rehmanniae Radix in Medical Cases of Qing Court
Yan JIN ; Tiegui NAN ; Yihan WANG ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):232-238
To gain an in-depth understanding of the clinical application of Rehmanniae Radix during the Qing Dynasty and to clarify its specifications and corresponding therapeutic effects, this study took Rehmanniae Radix in the prescriptions documented in Research on Medical Cases of the Qing Imperial Court as the research subject. According to historical medical literature, a comprehensive investigation was conducted on the specifications, therapeutic efficacy, frequency of use, dosage, and seasonal patterns of Rehmanniae Radix employed by imperial physicians. The findings revealed that Rehmanniae Radix in the medical cases of the Qing court was primarily classified into three categories: Xiaoshengdi, Zhongshengdi, and Dashengdi. Xiaoshengdi was also referred to as Xishengdi or Cishengdi, all denoting dried Rehmanniae Radix. The term Xishengdi was inconsistently defined in the literature. It should refer to the slender variant of dried Rehmanniae Radix and was utilized as a specific specification in the medical cases of the Qing court. In contrast, the wild fresh roots of Rehmanniae Radix, described as "as slender as fingers", were commonly documented as fresh Rehmanniae Radix in these medical cases. There were variations in Rehmanniae Radix size and grading between historical and contemporary standards. Furthermore, therapeutic differences were observed among Rehmanniae Radix specifications in the medical cases of the Qing court. Xiaoshengdi and Zhongshengdi exhibited slightly stronger blood-cooling and heat-clearing effects while maintaining a non-cloying Yin-nourishing property. In contrast, Dashengdi demonstrated a greater emphasis on Yin supplementation with relatively milder heat-clearing activity. In the medical cases of the Qing court, the dosage of Rehmanniae Radix in different specifications was usually 11.2-18.7 g per dose, typically administered twice daily. Rehmanniae Radix in different specifications exhibits variations in efficacy, which can provide evidence-based insights for precise clinical application.
4.Herbal Textual Research on Inulae Flos in Famous Classical Formulas
Caixia LIU ; Yue HAN ; Yanzhu MA ; Lei GAO ; Sheng WANG ; Yan YANG ; Wenchuan LUO ; Ling JIN ; Jing SHAO ; Zhijia CUI ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):210-221
In this paper, by referring to ancient and modern literature, the textual research of Inulae Flos has been conducted to clarify the name, origin, production area, quality evaluation, harvesting, processing and others, so as to provide reference and basis for the development and utilization of famous classical formulas containing this herb. After textual research, it could be verified that the medicinal use of Inulae Flos was first recorded in Shennong Bencaojing of the Han dynasty. In successive dynasties, Xuanfuhua has been taken as the official name, and it also has other alternative names such as Jinfeicao, Daogeng and Jinqianhua. The period before the Song and Yuan dynasties, the main origin of Inulae Flos was the Asteraceae plant Inula japonica, and from the Ming and Qing dynasties to the present, I. japonica and I. britannica are the primary source. In addition to the dominant basal species, there are also regional species such as I. linariifolia, I. helianthus-aquatili, and I. hupehensis. The earliest recorded production areas in ancient times were Henan, Hubei and other places, and the literature records that it has been distributed throughout the country since modern times. The medicinal part is its flower, the harvesting and processing method recorded in the past dynasties is mainly harvested in the fifth and ninth lunar months, and dried in the sun, and the modern harvesting is mostly harvested in summer and autumn when the flowers bloom, in order to remove impurities, dry in the shade or dry in the sun. In addition, the roots, whole herbs and aerial parts are used as medicinal materials. In ancient times, there were no records about the quality of Inulae Flos, and in modern times, it is generally believed that the quality of complete flower structure, small receptacles, large blooms, yellow petals, long filaments, many fluffs, no fragments, and no branches is better. Ancient processing methods primarily involved cleaning, steaming, and sun-drying, supplemented by techniques such as boiling, roasting, burning, simmering, stir-frying, and honey-processing. Modern processing focuses mainly on cleaning the stems and leaves before use. Regarding the medicinal properties, ancient texts describe it as salty and sweet in taste, slightly warm in nature, and mildly toxic. Modern studies characterize it as bitter, pungent, and salty in taste, with a slightly warm nature. Its therapeutic effects remain consistent across eras, including descending Qi, resolving phlegm, promoting diuresis, and stopping vomiting. Based on the research results, it is recommended that when developing famous classical formulas containing Inulae Flos, either I. japonica or I. britannica should be used as the medicinal source. Processing methods should follow formula requirements, where no processing instructions are specified, the raw products may be used after cleaning.
5.Application Analysis of Rehmanniae Radix in Medical Cases of Qing Court
Yan JIN ; Tiegui NAN ; Yihan WANG ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):232-238
To gain an in-depth understanding of the clinical application of Rehmanniae Radix during the Qing Dynasty and to clarify its specifications and corresponding therapeutic effects, this study took Rehmanniae Radix in the prescriptions documented in Research on Medical Cases of the Qing Imperial Court as the research subject. According to historical medical literature, a comprehensive investigation was conducted on the specifications, therapeutic efficacy, frequency of use, dosage, and seasonal patterns of Rehmanniae Radix employed by imperial physicians. The findings revealed that Rehmanniae Radix in the medical cases of the Qing court was primarily classified into three categories: Xiaoshengdi, Zhongshengdi, and Dashengdi. Xiaoshengdi was also referred to as Xishengdi or Cishengdi, all denoting dried Rehmanniae Radix. The term Xishengdi was inconsistently defined in the literature. It should refer to the slender variant of dried Rehmanniae Radix and was utilized as a specific specification in the medical cases of the Qing court. In contrast, the wild fresh roots of Rehmanniae Radix, described as "as slender as fingers", were commonly documented as fresh Rehmanniae Radix in these medical cases. There were variations in Rehmanniae Radix size and grading between historical and contemporary standards. Furthermore, therapeutic differences were observed among Rehmanniae Radix specifications in the medical cases of the Qing court. Xiaoshengdi and Zhongshengdi exhibited slightly stronger blood-cooling and heat-clearing effects while maintaining a non-cloying Yin-nourishing property. In contrast, Dashengdi demonstrated a greater emphasis on Yin supplementation with relatively milder heat-clearing activity. In the medical cases of the Qing court, the dosage of Rehmanniae Radix in different specifications was usually 11.2-18.7 g per dose, typically administered twice daily. Rehmanniae Radix in different specifications exhibits variations in efficacy, which can provide evidence-based insights for precise clinical application.
6.Resveratrol activates extracellular-regulated protein kinase 5 signaling protein to promote proliferation of mouse MC3T3-E1 cells
Yongkang NIU ; Zhiwei FENG ; Yaobin WANG ; Zhongcheng LIU ; Dejian XIANG ; Xiaoyuan LIANG ; Zhi YI ; Hongwei ZHAN ; Bin GENG ; Yayi XIA
Chinese Journal of Tissue Engineering Research 2025;29(5):908-916
BACKGROUND:The extracellular-regulated protein kinase 5(ERK5)signaling protein is essential for the survival of organisms,and resveratrol can promote osteoblast proliferation through various pathways.However,whether resveratrol can regulate osteoblast function through the ERK5 signaling protein needs further verification. OBJECTIVE:To explore the regulatory effect of ERK5 on the proliferation of MC3T3-E1 cells and related secreted proteins,and to further verify whether resveratrol can complete the above process by activating ERK5. METHODS:Mouse MC3T3-E1 preosteoblasts were treated with complete culture medium,XMD8-92(an ERK5 inhibitor),epidermal growth factor(an ERK5 activator),resveratrol alone,XMD8-92+EGF,and resveratrol+XMD8-92,respectively.Western blot assay was used to detect the expression of ERK5 and p-ERK5 proteins,proliferation-related proteins Cyclin D1,CDK4 and PCNA,and osteoblast-secreted proteins osteoprotegerin and receptor activator of nuclear factor-κB ligand in MC3T3-E1 cells of each group.The fluorescence intensity of ERK5,osteoprotegerin and receptor activator of nuclear factor-κB ligand in each group was detected by cell immunofluorescence staining,and cell proliferation was detected by EdU staining,respectively.The appropriate concentration and time of resveratrol intervention in MC3T3-E1 cells were determined by cell morphology observation and cell counting kit-8 assay. RESULTS AND CONCLUSION:The activation of ERK5 signaling protein could effectively promote the proliferation of MC3T3-E1 cells,up-regulate the osteoprotegerin/receptor activator of nuclear factor-κB ligand ratio.The appropriate concentration and time for resveratrol intervention in MC3T3-E1 cells was 5 μmol/L and 24 hours,respectively.Resveratrol could activate ERK5 signaling protein,thereby promoting osteoblast proliferation and up-regulating the osteoprotegerin/RANKL ratio.All these results indicate that resveratrol can promote the proliferation of MC3T3-E1 cells and up-regulate the osteoprotegerin/RANKL ratio by activating the ERK5 signaling protein.
7.Hydrogels:role and problems in the repair of oral and maxillofacial defects
Zhixin WU ; Wenwen JIANG ; Jianhui ZHAN ; Yangshurun LI ; Wenyan REN ; Yiyu WANG
Chinese Journal of Tissue Engineering Research 2025;29(10):2178-2188
BACKGROUND:Hydrogels have become a research hotspot due to their unique advantages in the biomedical field due to their superior mechanical and biological properties.At present,related research involves tissue engineering,wound dressing and so on. OBJECTIVE:To review the advantages and properties of hydrogels and the research progress of their application in the repair of oral and maxillofacial defects,discuss the current limitations and challenges of hydrogels in application and promotion,and provide new ideas for future research directions. METHODS:Relevant literature was searched in PubMed,CNKI,and WanFang database by computer.The search terms were"hydrogel,oral and maxillofacial defects,mechanical properties,tissue engineering,wound dressing"in Chinese and"hydrogel,oral and maxillofacial defects,mechanical properties,guided tissue regeneration,wound dressing"in English.Preliminary screening was carried out by reading titles and abstracts,and articles not related to the topic of the article were excluded.According to the inclusion and exclusion criteria,108 articles were finally included for the result analysis. RESULTS AND CONCLUSION:(1)The hydrogel has good biological activity,mechanical controllability,and stimulation response.(2)Polymer,metal,and ceramic hydrogel composites have appropriate mechanical properties,biodegradability,and controlled release rate,which are suitable for maxillofacial bone tissue engineering.(3)Fibrin-based hydrogel could fill the hollow nerve conduit through the nerve defect area and promote the regeneration and growth of axons to restore the function of maxillofacial nerve.(4)Controlling the interaction between nanomaterials and hydrogels can improve the formation of muscle fiber oriented structure to promote maxillofacial muscle tissue regeneration.(5)Polysaccharide hydrogel has gradually become the first choice for repairing irregular periodontal defects due to its ability to control drug delivery,carry bioactive molecules,and combine with other materials to produce the best scaffold matching the extracellular matrix.(6)Calcium phosphate or calcium carbonate-based hydrogels can be used to fill irregular or fine tissue defects and remineralize hard tissues.The self-assembled hydrogels are simple to prepare and have good biological activity.(7)Salivary gland-derived extracellular matrix-like gel is expected to participate in the treatment of many salivary gland diseases.(8)Hydrogels can be used as wound dressings in combination with biological adhesives,acellular biomaterials,antimicrobials,antioxidants,or stem cells to treat various wounds.(9)Fibrin-based hydrogel has the most potential in the repair of oral and maxillofacial defects.It has excellent biocompatibility,flexibility,and plasticity.It can combine with cells,extracellular matrix proteins,and various growth factors,and promote the osteogenic differentiation of mesenchymal stem cells,axon regeneration and growth,angiogenesis,myotube differentiation,salivary gland tissue regeneration,and periodontal tissue regeneration.It has a broad prospect in the repair of oral and maxillofacial defects.However,its therapeutic effect depends on the function of the substance carried.The complex preparation process,its safety and long-term efficacy,and the special anatomical oral and maxillofacial structure is the problem that hinders its promotion,which also provides directions for future research.
8.Herbal Textual Research on Houttuyniae Herba in Famous Classical Formulas
Dan ZHAO ; Changgui YANG ; Chuanzhi KANG ; Chenghong XIAO ; Zhikun WU ; Hongliang MA ; Jiwen WANG ; Xiufu WAN ; Sheng WANG ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(8):250-259
This article systematically analyzes the historical evolution of the name, medicinal parts, origin, harvesting, processing and other aspects of Houttuyniae Herba(HH) by referring to the medical books, prescription books and other documents of the past dynasties, combined with the research materials related to modern and contemporary times, in order to provide a basis for the development of famous classical formulas containing this herb. In ancient literature, HH was often referred to as "Ji" and "Jicai", the name of "Ji" was first recorded in Mingyi Bielu during the Han and Wei dynasties, and the name of Yuxingcao was first seen in Lyuchanyan Bencao during the southern Song dynasty and has continued to this day. The origin of HH used throughout history is consistent, all of which are the whole herb or aboveground parts of Houttuynia cordata in Saururaceae family. HH recorded throughout history has a wide range of production areas, mostly self-produced self-marketing. In ancient times, fresh HH was often used as medicine by pounding its juice without involving any processing steps. Both fresh and dried products can be used as medicine, the fresh products uses the whole plant, while the dried products uses the aboveground parts, which are cleaned, selected and processed before use. Fresh products are harvested regardless of season, while dried products are harvested in both summer and autumn, with summer as the best. In ancient times, there were no specific requirements for the quality of HH, while in modern times, "intact stems and leaves with a strong fishy smell" are preferred. In addition, the medicinal properties of HH have undergone significant changes from ancient to modern times. In the early period, it was believed that its medicinal property was slightly warm, until the 1977 edition of Chinese Pharmacopoeia officially changed it to slightly cold. Both ancient and modern literature states that HH can be used for the treatment of carbuncle and malignant sores, Lyuchanyan Bencao for the first time introduced HH fresh juice can relieve summer heat, since Diannan Bencao recorded that it can be used for lung carbuncle, and gradually developed into the first choice for the treatment of lung carbuncle. Based on the research results, it is suggested that fresh herb or dried aboveground parts of H. cordata are used as medicine when developing famous classical formulas.
9.Herbal Textual Research on Dioscoreae Hypoglaucae Rhizoma, Dioscoreae Spongiosae Rhizoma, Smilacis Chinae Rhizoma and Smilacis Glabrae Rhizoma in Famous Classical Formulas
Li LU ; Yichen YANG ; Erhuan WANG ; Hui CHANG ; Li AN ; Shibao WANG ; Cunde MA ; Zhilai ZHAN
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(5):218-247
This article systematically reviews and verifies the medicinal materials of Dioscoreae Hypoglaucae Rhizoma(DHR), Dioscoreae Spongiosae Rhizoma(DSR), Smilacis Chinae Rhizoma(SCR) and Smilacis Glabrae Rhizoma(SGR) from the aspects of name, origin, producing area, quality, harvesting, processing and efficacy by consulting historical literature, in order to provide reference for the development and utilization of famous classical formulas containing the four medicinal materials. DHR, DSR, SCR and SGR have a long history of application as medicinal materials. However, due to their similar growth environment and medicinal properties, as well as their functions of promoting dampness, dispelling wind and removing numbness, there have been instances of homonymous foreign objects and homonymous synonyms throughout history, resulting in confusion of the origin. Therefore, it is necessary to conduct comparative analysis and systematic research for clarifying the historical development and changes of the four, in order to provide a basis for safe and effective medication. According to research, Bixie was first recorded in Shennong Bencaojing and has been historically known as Baizhi, Chijie, Zhumu, and other aliases. From ancient times to the mid-20th century, there has always been a situation where the rhizomes of Dioscorea plants and Smilax plants, and even the rhizomes of Heterosmilax plants, were mixed together to be used as medicinal herbs for Bixie. However, since the Tang dynasty, it has been clearly advocated that the rhizomes of Dioscorea plants have excellent quality and have been the mainstream throughout history. The 2020 edition of Chinese Pharmacopoeia categorized it into two types of medicinal herbs(DHR and DSR). Among them, the origin of DHR is the dry rhizomes of Dioscorea hypoglauca, and the origins of DSR are the dry rhizomes of D. spongiosa and D. futschauensis. In ancient times, due to different types, the corresponding production areas of DHR and DSR were also different. Nowadays, They are mainly produced in the southern region of the Yangtze River. Since the Tang dynasty, the quality of Bixie has been characterized by its white color and soft nature. In modern times, it has been summarized that those with white color, large and thin pieces, powdery texture, tough and elastic texture, and neat and unbreakable are the best. The harvesting times of DHR and DSR are in spring or autumn, with the best quality harvested in autumn. The mainstream processing methods of them are slicing and then using the raw products or wine-processed products. SCR was first recorded in Mingyi Bielu and has been known as Jinganggen, Tielingjiao, Tieshuazi, and other aliases in history. The mainstream source is the dry rhizomes of Smilax china in the past dynasties, with the best quality being those that are tough and rich in powder. The harvesting time is from the late autumn to the following spring, and the main processing method throughout history has been slicing for raw use. SGR was first recorded under the item of Yuyuliang in Variorum of Shennong's Classic of Materia Medica. It was listed as an independent medicinal material from Bencao Gangmu. In history, there were such aliases as Cao Yuyuliang, Lengfantuan, Xianyiliang, Tubixie, etc. The main source of the past dynasties was dry rhizomes of S. glabra. In history, there have also been instances of multiple plants belonging to the same genus, and even cases of mixing the rhizomes of plants in the genus Heterosmilax. It is mainly produced in Guangdong, Hunan, Hubei, Zhejiang, Sichuan, Anhui and other regions, its quality has been summarized as large in size, powdery in texture, with few veins, and light brown in cross-section since modern times. The harvesting time is in spring or autumn, and the main processing method throughout history has been slicing for raw use. DHR, DSR, SCR and SGR all have the effects of promoting dampness, dispelling wind, relieving rheumatism and detoxifying. However, their detoxification abilities are ranked as follows:SGR>SCR>Bixie(DHR and DSR). Especially for the treatment of limb spasms, arthralgia and myalgia, scrofula, and scabies caused by syphilis and mercury poisoning, SGR has a unique effect. Based on the research results, DHR is recommended to develop the famous classical formulas containing Bixie as the first choice for medicinal herbs. It should be harvested in autumn, sliced thinly while fresh, and processed according to the requirements of the famous classical formulas, without any requirements for raw use. Selecting the rhizomes of S. china, harvested in late autumn, and thinly sliced while fresh. If there are no special processing requirements in the formulas, use it raw. Selecting the rhizomes of S. glabra, it is harvested in autumn and thinly sliced while fresh. If there are no special processing requirements in the formulas, raw products can be used.
10.Design, synthesis and evaluation of oxadiazoles as novel XO inhibitors
Hong-zhan WANG ; Ya-jun YANG ; Ying YANG ; Fei YE ; Jin-ying TIAN ; Chuan-ming ZHANG ; Zhi-yan XIAO
Acta Pharmaceutica Sinica 2025;60(1):164-171
Xanthine oxidase (XO) is an important therapeutic target for the treatment of hyperuricemia and gout. Based on the previously identified potent XO inhibitor

Result Analysis
Print
Save
E-mail