1.Identification of shared key genes and pathways in osteoarthritis and sarcopenia patients based on bioinformatics analysis.
Yuyan SUN ; Ziyu LUO ; Huixian LING ; Sha WU ; Hongwei SHEN ; Yuanyuan FU ; Thainamanh NGO ; Wen WANG ; Ying KONG
Journal of Central South University(Medical Sciences) 2025;50(3):430-446
OBJECTIVES:
Osteoarthritis (OA) and sarcopenia are significant health concerns in the elderly, substantially impacting their daily activities and quality of life. However, the relationship between them remains poorly understood. This study aims to uncover common biomarkers and pathways associated with both OA and sarcopenia.
METHODS:
Gene expression profiles related to OA and sarcopenia were retrieved from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) between disease and control groups were identified using R software. Common DEGs were extracted via Venn diagram analysis. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted to identify biological processes and pathways associated with shared DEGs. Protein-protein interaction (PPI) networks were constructed, and candidate hub genes were ranked using the maximal clique centrality (MCC) algorithm. Further validation of hub gene expression was performed using 2 independent datasets. Receiver operating characteristic (ROC) curve analysis was used to evaluate the predictive value of key genes for OA and sarcopenia. Mouse models of OA and sarcopenia were established. Hematoxylin-eosin and Safranin O/Fast Green staining were used to validate the OA model. The sarcopenia model was validated via rotarod testing and quadriceps muscle mass measurement. Real-time reverse transcription PCR (real-time RT-PCR) was employed to assess the mRNA expression levels of candidate key genes in both models. Gene set enrichment analysis (GSEA) was conducted to identify pathways associated with the selected shared key genes in both diseases.
RESULTS:
A total of 89 common DEGs were identified in the gene expression profiles of OA and sarcopenia, including 76 upregulated and 13 downregulated genes. These 89 DEGs were significantly enriched in protein digestion and absorption, the PI3K-Akt signaling pathway, and extracellular matrix-receptor interaction. PPI network analysis and MCC algorithm analysis of the 89 common DEGs identified the top 17 candidate hub genes. Based on the differential expression analysis of these 17 candidate hub genes in the validation datasets, AEBP1 and COL8A2 were ultimately selected as the common key genes for both diseases, both of which showed a significant upregulation trend in the disease groups (all P<0.05). The value of area under the curve (AUC) for AEBP1 and COL8A2 in the OA and sarcopenia datasets were all greater than 0.7, indicating that both genes have potential value in predicting OA and sarcopenia. Real-time RT-PCR results showed that the mRNA expression levels of AEBP1 and COL8A2 were significantly upregulated in the disease groups (all P<0.05), consistent with the results observed in the bioinformatics analysis. GSEA revealed that AEBP1 and COL8A2 were closely related to extracellular matrix-receptor interaction, ribosome, and oxidative phosphorylation in OA and sarcopenia.
CONCLUSIONS
AEBP1 and COL8A2 have the potential to serve as common biomarkers for OA and sarcopenia. The extracellular matrix-receptor interaction pathway may represent a potential target for the prevention and treatment of both OA and sarcopenia.
Sarcopenia/genetics*
;
Osteoarthritis/genetics*
;
Computational Biology/methods*
;
Humans
;
Protein Interaction Maps/genetics*
;
Animals
;
Mice
;
Gene Expression Profiling
;
Gene Ontology
;
Transcriptome
;
Male
;
Signal Transduction/genetics*
;
Gene Regulatory Networks
2.Mechanism by which mechanical stimulation regulates chondrocyte apoptosis and matrix metabolism via primary cilia to delay osteoarthritis progression.
Huixian LING ; Sha WU ; Ziyu LUO ; Yuyan SUN ; Hongwei SHEN ; Haiqi ZHOU ; Yuanyuan FU ; Wen WANG ; Thai Namanh NGO ; Ying KONG
Journal of Central South University(Medical Sciences) 2025;50(5):864-875
OBJECTIVES:
Osteoarthritis (OA) is one of the most common chronic degenerative diseases, with chondrocyte apoptosis and extracellular matrix (ECM) degradation as the major pathological changes. The mechanical stimulation can attenuate chondrocyte apoptosis and promote ECM synthesis, but the underlying molecular mechanisms remain unclear. This study aims to investigate the role of primary cilia (PC) in mediating the effects of mechanical stimulation on OA progression.
METHODS:
In vivo, conditional knockout mice lacking intraflagellar transport 88 (IFT88flox/flox IFT88 knockout; i.e., primary cilia-deficient mice) were generated, with wild-type mice as controls. OA models were established via anterior cruciate ligament transection combined with destabilization of the medial meniscus, followed by treadmill exercise intervention. OA progression was evaluated by hematoxylin-eosin staining, safranin O-fast green staining, and immunohistochemistry; apoptosis was assessed by TUNEL staining; and limb function by rotarod testing. In vitro, primary articular chondrocytes were isolated from mice and transfected with lentiviral vectors to suppress IFT88 expression, thereby constructing a primary cilia-deficient cell model. Interleukin-1β (IL-1β) was used to induce an inflammatory environment, while cyclic tensile strain (CTS) was applied via a cell stretcher to mimic mechanical loading on chondrocytes. Immunofluorescence and Western blotting were used to detect the protein expression levels of type II collagen α1 chain (COL2A1), primary cilia, IFT88, and caspase-12; reverse transcription polymerase chain reaction was performed to assess COL2A1 mRNA levels; and flow cytometry was used to evaluate apoptosis.
RESULTS:
In vivo, treadmill exercise significantly reduced Osteoarthritis Research Society International (OARSI) scores and apoptotic cell rates, and improved balance ability in wild-type OA mice, whereas IFT88-deficient OA mice showed no significant improvement. In vitro, CTS inhibited IL-1β-induced ECM degradation and apoptosis in primary chondrocytes; however, this protective effect was abolished in cells with suppressed primary cilia expression.
CONCLUSIONS
Mechanical stimulation delays OA progression by mediating signal transduction through primary cilia, thereby inhibiting cartilage degeneration and chondrocyte apoptosis.
Animals
;
Chondrocytes/cytology*
;
Apoptosis/physiology*
;
Mice
;
Cilia/metabolism*
;
Osteoarthritis/pathology*
;
Extracellular Matrix/metabolism*
;
Mice, Knockout
;
Disease Progression
;
Interleukin-1beta
;
Male
;
Cells, Cultured
3.Setd2 overexpression rescues bivalent gene expression during SCNT-mediated ZGA.
Xiaolei ZHANG ; Ruimin XU ; Yuyan ZHAO ; Yijia YANG ; Qi SHI ; Hong WANG ; Xiaoyu LIU ; Shaorong GAO ; Chong LI
Protein & Cell 2025;16(6):439-457
Successful cloning through somatic cell nuclear transfer (SCNT) faces significant challenges due to epigenetic obstacles. Recent studies have highlighted the roles of H3K4me3 and H3K27me3 as potential contributors to these obstacles. However, the underlying mechanisms remain largely unclear. In this study, we generated genome-wide maps of H3K4me3 and H3K27me3 in mouse pre-implantation NT embryos. Our analysis revealed that aberrantly over-represented broad H3K4me3 domain and H3K27me3 signal lead to increased bivalent marks at gene promoters in NT embryos compared with naturally fertilized (NF) embryos at the 2-cell stage, which may link to relatively low levels of H3K36me3 in NT 2-cell embryos. Notably, the overexpression of Setd2, a H3K36me3 methyltransferase, successfully restored multiple epigenetic marks, including H3K36me3, H3K4me3, and H3K27me3. In addition, it reinstated the expression levels of ZGA-related genes by reestablishing H3K36me3 at gene body regions, which excluded H3K27me3 from bivalent promoters, ultimately improving cloning efficiency. These findings highlight the excessive bivalent state at gene promoters as a potent barrier and emphasize the removal of these barriers as a promising approach for achieving higher cloning efficiency.
Animals
;
Mice
;
Histone-Lysine N-Methyltransferase/biosynthesis*
;
Histones/genetics*
;
Nuclear Transfer Techniques
;
Female
;
Gene Expression Regulation, Developmental
;
Promoter Regions, Genetic
;
Epigenesis, Genetic
;
Embryo, Mammalian/metabolism*
4.WANG Xixing's Experience in Differentiation and Treatment of Advanced Breast Cancer with Anxiety and Depression:Based on Shaoyang Pivot Theory
Wenbo ZHAI ; Xinyue WANG ; Dongxin ZHANG ; Zhiyao SHI ; Yuyan GUO ; Xi YANG ;
Journal of Traditional Chinese Medicine 2025;66(23):2421-2425
To summarize Professor WANG Xixing's clinical experience in treating advanced breast cancer with anxiety and depression from the perspective of shaoyang pivot. It is believed that the core pathogenesis of advanced breast cancer with anxiety and depression lies in the dysfunction of shaoyang pivot (referring to the imbalanced regulatory function of the shaoyang meridian system that governs the transportation and transformation of qi, blood, and body fluids). This dysfunction can lead to abnormal circulation of qi, blood, and body fluids, as well as the intermingling of phlegm and blood stasis, which further promotes the spread and diffusion of cancer toxin. Meanwhile, it disturbs mental activity, resulting in a condition characterized by stagnation of cancer toxin and concurrent disorders of both the physical body and the spirit. Based on this pathogenesis, the basic therapeutic principles of harmonizing shaoyang, regulating the pivot to calm the spirit, and dissipating masses and resolving toxins are proposed. Clinically, the disease is classified into three syndromes for differentiation and treatment. For shaoyang pivot dysfunction syndrome, treatment should use self-prescribed Chaiqin Hengshu Ningxin Decoction (柴芩衡枢宁神汤); for sanjiao pivot dysfunction syndrome, treatment should prescribe Chaigui Tongshu Dashen Decoction (柴归通枢达神饮); for gallbladder function disorder syndrome, treatment should apply Wendan Qishu Shoushen Decoction (温胆启枢守神汤). Throughout the treatment process, the concept of "simultaneous treatment of cancer and depression" is implemented to smooth the shaoyang pivot, block the vicious cycle where cancer toxin and emotional abnormalities mutually reinforce each other.
5.Risk Factors of Type 2 Diabetes Mellitus in Rural Residents
Huilin CHAI ; Mengqin WANG ; Yuyan GUO
Journal of Medical Research 2024;53(5):130-134
Objective To investigate the distribution characteristics and risk factors of type 2 diabetes mellitus(T2DM)in rural residents of Yangqu county,Shanxi province.Methods In October 2020,a total of 5028 residents aged 18 years and above in rural are-as of Yangqu county,Shanxi province were selected as the research subjects by multi-stage stratified cluster random sampling.Question-naire survey and physical examination were used to conduct the study.Unconditional Logistic regression was used to analyze the risk factors for T2DM.Results In rural areas of Yangqu county,Shanxi province,11.8%(95%CI:10.9%-12.6%)of residents who were aged 18 years and above had T2DM.The prevalence of females was 14.1%(95%Cl:12.9%-15.4%)and males was 8.6%(95%CI:7.4%-9.8%).The results of unconditional Logistic regression showed that female(OR=1.619,95%CI:1.324-1.981),advanced age(OR=5.909,95%CI:2.893-12.072;OR=9.575,95%CI:4.802-19.095;OR=11.779,95%CI:5.896-23.535;OR=8.793,95%CI:4.238-18.244),hypertension(OR=2.468,95%CI:2.013-3.027),hyperlipidemia(OR=2.968,95%CI:2.232-3.947),and family history of diabetes mellitus(OR=7.253,95%CI:5.434-9.682)were significantly associated with T2DM.Conclusion Female,advanced age,hypertension,hyperlipidemia,and family history of diabetes mellitus were the risk factors of T2DM in rural residents of Yangqu county,Shanxi province.
6.Effects of immune responses mediated by topological structures of three-dimensional bioprinted scaffolds on hair follicle cycle in mice
Qinghua LIU ; Zhao LI ; Chao ZHANG ; Wei SONG ; Yuzhen WANG ; Liting LIANG ; Mengde ZHANG ; Yuyan HUANG ; Xiaohe LI ; Sha HUANG
Chinese Journal of Burns 2024;40(1):43-49
Objective:To explore the effects of the immune responses mediated by topological structures of three-dimensional bioprinted scaffolds on hair follicle cycle in mice.Methods:The study was an experimental research. The alginate-gelatin composite hydrogels were printed into scaffolds using a three-dimensional bioprinter and named T45 scaffolds, T60 scaffolds, and T90 scaffolds according to the 3 topological structures of the scaffolds (the rotation angles of the printhead during printing were 45°, 60°, and 90°, respectively), and the morphology of the three scaffolds was observed after cross-linking by naked eyes. Nine 8-week-old female C57BL/6J mice were divided into T45 group, T60 group, and T90 group, according to the random number table, with three mice in each group, and the T45, T60, and T90 scaffolds were subcutaneously implanted on the back of mice, respectively. On post implantation day (PID) 7, the hair growth in the dorsal depilated area of mice was observed, the thickness of the fiber capsule around the scaffolds was observed by hematoxylin-eosin staining, and the expression levels of CD68, bone morphogenetic protein-2 (BMP-2), and tumor necrosis factor (TNF) protein in the tissue surrounding the scaffolds were observed by immunofluorescence staining. The samples of the above experiments were all 3.Results:The topological structures of the three scaffolds were all clear with high fidelity after cross-linking. On PID 7, the hair growth was obvious in the dorsal depilated area of mice in T45 group and T90 group, while hair growth was slow in the scaffold implantation area of mice in T60 group, which was significantly different from that of the unimplanted area. On PID 7, compared with (18±4) μm in T90 group, the thickness of both the fiber capsule around the scaffolds ((39±4) and (55±8) μm) of mice in T45 group and T60 group was significantly increased ( P<0.05); the thickness of the fiber capsule around the scaffolds of mice in T60 group was also significantly increased compared with that in T45 group ( P<0.05). On PID 7, the expression level of CD68 protein in the tissue surrounding the scaffolds of mice in T60 group was significantly higher than the levels in T45 group and T90 group (with both P values <0.05). The expression level of BMP-2 protein in the tissue surrounding the scaffolds of mice in T60 group was significantly higher than the levels in T45 group and T90 group (with both P values <0.05), and the expression level of BMP-2 protein in the tissue surrounding the scaffolds of mice in T45 group was significantly higher than that in T90 group ( P<0.05). The expression level of TNF protein in the tissue surrounding the scaffolds of mice in T60 group was significantly lower than the levels in T45 group and T90 group (with both P values <0.05). Conclusions:Three-dimensional bioprinted scaffolds with different topological structures mediate different degrees of immune responses after being implanted in mice. A moderate immune response promotes hair growth in depilated area of mice, while an excessive immune response results inhibits the hair follicle entering into the anagen phase.
7.Mixed konjac glucomannan regulates immunity of the cyclophosphamide-induced immunosuppressed mice
Jiajia DAI ; Yuyan ZHOU ; Jing OU ; Yuhan YANG ; Chuanhu XI ; Guodong WANG
Journal of Shenyang Medical College 2024;26(5):474-479
Objective:To investigate the immunomodulatory effect of mixed konjac glucomannan(MKGM)on cyclophosphamide-induced immunosuppressed mice.Methods:The immunosuppressed mice model was established by cyclophosphamide.After treatment with MKGM for 25 d,organ index,lymphocyte proliferation,macrophage function,NK cell killing,and cytokine secretion of mice were observed.Results:Immunomodulatory effect of MKGM was firstly enhanced and then declined.Compared to model group,there were significant differences in organ index,lymphocyte proliferation,macrophage function,NK cell killing,and hemolysin in the medium-dose MKGM group(P<0.01).HE staining showed that the low-dose MKGM had the best effect on repairing spleen injury caused by cyclophosphamide.However,medium-and high-dose MKGM had relatively weak immunomodulatory effects.Conclusion:The appropriate dose of MKGM can play an immunomodulatory role in the cyclophosphamide-induced immunosuppressed mice.
8.Total Saponins of Dioscorea Mitigate Nonalcoholic Steatohepatitis in Mice by Regulating AMPK/SREBP-1c/ACC Signaling Pathway
Yuyan LIU ; Dandan WANG ; Xin WANG ; Guoying LI ; Guangliang CHEN
Chinese Journal of Experimental Traditional Medical Formulae 2024;30(8):41-48
ObjectiveTo investigate the role and mechanism of total saponins of Dioscorea (TSD) in mitigating nonalcoholic steatohepatitis (NASH) in mice. MethodForty-eight C57BL/6J mice were randomized into a normal group and a modeling group. The mice for modeling were fed with a high-fat and high-cholesterol diet + 20% fructose solution for 16 weeks and randomized into model, atorvastatin (4 mg·kg-1·d-1), and high-, medium-, and low-dose (200, 60, and 20 mg·kg-1·d-1) TSD groups. The mice were administrated with corresponding doses of drugs by gavage for 8 weeks. The mouse activity, liver index, levels of total cholesterol (TC), triglycerides (TG), and free fatty acids (FFAs) in the liver, and levels of TC, TG, aspartate aminotransferase (AST), alanine aminotransferase (ALT), γ-glutamyl transferase (GGT), interleukin-1β (IL-1β), and tumor necrosis factor-α (TNF-α) in the serum were measured. Hematoxylin-eosin staining, Masson staining, oil red O staining, and transmission electron microscopy were employed to observe the pathological changes, lipid accumulation, and morphological changes of liver ultrastructure. Western blot was employed to determine the protein levels of AMP-activated protein kinase (AMPK), sterol regulatory element-binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), and phosphorylated ACC (p-ACC) in the liver tissue. ResultCompared with the normal group, the activity of mice in the model group decreased(P<0.05, P<0.01), the levels of TC, TG, FFA and serum TC, TG, ALT, AST, GGT, IL-1β and TNF-α, liver coefficient and liver pathology scores were significantly increased, the expression of p-AMPK/AMPK and p-ACC proteins in liver tissues was significantly reduced, and the expressions of SREBP-1c and ACC proteins were significantly increased (P<0.01). Compared with the model group, atorvastatin increased the mouse activity (P<0.05), while each dose of TSD caused no significant changed in the mouse activity. The levels of TC, TG, FFA in liver and serum TC, TG, ALT, AST, GGT, IL-1β, TNF-α, liver coefficient and liver pathological score in TSD and atorvastatin groups were significantly decreased, and the expressions of p-AMPK/AMPK and p-ACC in liver tissue were significantly increased. The expressions of SREBP-1c and ACC were significantly decreased (P<0.05,P<0.01). ConclusionTSD may alleviate NASH in mice by regulating the AMPK/SREBP-1c/ACC signaling pathway to reduce lipid synthesis.
9.Research progress on applications and mechanisms of osteogenesis effect of magnetic fields in oral field
CHEN Jinquan ; LIU Yuyan ; WANG Guoqing ; SUN Xiumei
Journal of Prevention and Treatment for Stomatological Diseases 2024;32(4):302-309
Magnetic fields are safe and used in noninvasive physical therapies. Numerous studies have confirmed that magnetic fields have good osteogenic effects and certain value for clinical application in accelerating orthodontic tooth movement, promoting bone-implant integration, promoting fracture healing and improving the effects of distraction osteogenesis. Magnetic fields are expected to become applied as effective auxiliary methods for treating oral diseases. To support the clinical application of magnetic fields, this article reviews the applications of magnetic fields in the oral cavity, the biological effects on bone cells and the molecular mechanisms through which magnetic fields regulate bone metabolism. The biological effects of magnetic fields on bone cells include promoting osteogenesis by osteoblasts and mesenchymal stem cells and inhibiting bone resorption by osteoclasts. At the molecular level, bone cells sense and respond to magnetic stimulation, and through various mechanisms, such as displacement currents, Lorentz forces, and free radical pair effects, stimuli are transformed into biologically recognizable electrical signals that activate complex downstream signaling pathways, such as the P2 purinergic receptor signaling pathway, adenosine receptor signaling pathway, transforming growth factor-β receptor signaling pathway, mammalian target of rapamycin (mTOR) pathway, and Notch pathway. In addition, magnetic parameters, which are the factors affecting the osteogenic effects of magnetic fields, are discussed. However, the mechanisms of the osteogenic effects of magnetic fields are unclear, and further studies of these mechanisms could provide effective strategies for bone regeneration and periodontal tissue regeneration. In addition, considering the target of magnetic field therapies, combination with other drugs could lead to new strategies for the treatment of oral diseases.
10.Discussion on Building a Medical Artificial Intelligence Technology Assessment System Suitable for Chinese National Conditions
Chinese Health Economics 2024;43(10):38-43
Objective:To explore the construction of a medical Artificial Intelligence(AI)technology assessment system suitable for the national conditions in China.Methods:Summarize the domestic and international traditional health technology assessment system,and analyze the distinctive characteristics and novel risk factors of medical AI technology.Results:The existing evaluation indexes of technical characteristics are most likely to assess AI technology based on the sub-evaluation indexes of reliability,but the evaluation focus of reliability cannot be assessed for algorithms,big data,arithmetic power and the existence of risk factors,and the existing system of health technology assessment needs to be further improved.Conclusion:Traditional health technology assessment system is challenging to apply to the evaluation of medical AI technology.It is recommended to use the traditional health technology assessment framework as a foundational structure,incorporate evaluation indicators related to the characteristics of medical AI technology,and refer to evaluation indicators and methods from relevant fields to adjust and refine the medical AI technology assessment system.


Result Analysis
Print
Save
E-mail